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Gabriella Conti1, Sylvia Frühwirth-Schnatter2, James J. Heckman3,4, and Rémi Piatek†5

1Department of Applied Health Research, University College London, UK
2Vienna University of Economics and Business, Austria
3Department of Economics, University of Chicago, USA

4American Bar Foundation, USA
5Department of Economics, University of Copenhagen, Denmark

Abstract
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1 Introduction

As the production of social statistics proliferates, aggregation and condensation of data have

become increasingly important. William Barnett has made and continues to make numerous

important contributions to constructing economically meaningful monetary aggregates (see,

e.g., Barnett and Chauvet, 2011). In the spirit of Barnett’s pioneering research, this pa-

per addresses the problem of constructing reliable and interpretable aggregates from myriad

measures. It is the first paper in the literature on Bayesian factor analysis to make inference

on a model where all measurements load onto at most one factor, and factors are correlated.

The model allows for the dimension of the latent structure to be unknown a priori, and the

allocation of measurements to factors is part of the inference procedure. Classical identi-

fication criteria are invoked and applied to the analysis to generate interpretable posterior

distributions.

The abundance of measures is both an opportunity and a challenge in many empirical

applications. The main question—both from a methodological and an applied standpoint—

is how to condense the available information into interpretable aggregates. Thurstone (1934)

postulated criteria and developed analytical methods for estimating and identifying factor

models with perfect simple structure, where each measurement is related to at most one latent

factor. In his view, models with simple structure were transparent and easily interpreted.

He developed the method of “oblique” factor analysis by arguing that correlated factors were

a more plausible representation of reality (Thurstone, 1947). Cattell (1952, 1966); Carroll

(1953); Saunders (1953); Ferguson (1954) and Hofmann (1978) are major exponents of the

concept of parsimony in the Thurstone tradition. We call Thurstone’s simple structure a

dedicated structure in this paper. It dedicates all measures to at most one factor. This

representation is widely used in economics (Heckman et al., 2006; Cunha et al., 2010; Conti

et al., 2010; Baron and Cobb-Clark, 2010).

Exploratory Factor Analysis is a well developed classical procedure for doing dedicated

factor analysis (Gorsuch, 1983, 2003). The various steps required in executing classical

Exploratory Factor Analyses (EFA) are all subject to a certain degree of arbitrariness and

entail ad hoc judgments. Classical EFA proceeds in four separate steps: (i) selecting the

dimension of the factor model; (ii) allocating measurements to factors; (iii) estimating factor

loadings; and (iv) discarding measurements that load on multiple factors. A variety of

methods are available to select the dimension of the latent structure, to extract and rotate

factors (Gorsuch, 2003; Costello and Osborne, 2005; Jennrich, 2001, 2002, 2004, 2006, 2007).

Our empirical analysis shows that each of the choices made by analysts at the various stages

of a classical EFA has substantial consequences on the estimated factor structure.
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This paper develops an integrated Bayesian approach to EFA that simultaneously selects

the dimension of the factor model, the allocation of measurements to factors, and the factor

loadings. Our method uses all of the available information by not discarding measurements

besides those that do not load on any factors. The procedure is justified by the usual

appeal to the optimality of Bayes procedures (see Berger, 1985). Different from the classical

literature in EFA, in our approach the number of factors is not determined in a first step,

but inferred along with other parameters. Our work advances the Bayesian approach to

factor analysis, because of the attention paid to the identification of the model. One of our

main contributions is to incorporate classical identification criteria into a Bayesian inference

procedure. In so doing, we are able to generate posterior distributions that are stable and

models that are clearly interpretable. The identifiability of the model is a key feature of the

algorithm. In this respect, our paper bridges a gap between the classical and the Bayesian

literatures.

Most articles on Bayesian factor analysis rely on a lower-triangular specification for the

factor loading matrix to achieve identification (West, 2003; Lopes and West, 2004; Lucas

et al., 2006; Carvalho et al., 2008). This approach, first suggested by Anderson and Rubin

(1956), has been widely applied (see, for example, Geweke and Zhou, 1996; Aguilar and West,

2000; Carneiro et al., 2003). It achieves identification in the general case, but at the price of

ad hoc decisions that result in a loss of flexibility—e.g., the choice and the ordering of the

measurements at the top of the factor loading matrix is not innocuous. In the framework

of sparse factor modelling, the problem becomes more complex, as the structure of the

factor loading matrix—in terms of position of the zero elements—is part of the inference

problem. Besides the upper triangle of the loading matrix that is fixed to zero a priori,

the remaining elements in the lower part of the matrix are also allowed to become equal to

zero. This introduces new challenges for identification, and additional identifying restrictions

are required. Our paper discusses this issue that has, to the best of our knowledge, been

overlooked in the literature so far. To tackle this problem, we take a different avenue and

incorporate identifying criteria into the prior distribution of model parameters instead of

imposing zero restrictions on the factor loading matrix a priori (Frühwirth-Schnatter and

Lopes, 2012, adopt a related approach).

In the field of Bayesian nonparametrics and machine learning, a strand of literature is

dedicated to the inference of factor models with a sparse structure of unknown dimension

(Knowles and Ghahramani, 2007; Paisley and Carin, 2009; Bhattacharya and Dunson, 2011),

and in a dynamic context with an unknown number of time-dependent factors (Chen et al.,

2011). These methods, however, focus on covariance structures, variable selection, or pre-

diction, and identification is not strictly required to achieve these goals from a Bayesian
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perspective. No paper in the Bayesian nonparametric literature imposes identifying restric-

tions on models in its inference algorithm.

Most existing approaches assume uncorrelated factors. Our method is the first in the

Bayesian literature to allow for correlated factors in the framework of a model where iden-

tification is secured. The specification of correlated factors, combined with the need to

produce identified models in a dimension-varying framework, raises challenges for the design

of a practical and efficient algorithm that are addressed in this paper.

The paper is organized in the following way. Section 2 presents our framework, which

allows for both continuous and binary measurements. We discuss the identification challenges

at stake, provide conditions for identification, and explain the constraints they impose on

the model. We also introduce the prior specification we adopt to conduct Bayesian inference.

Section 3 derives a new Bayesian computational procedure for identifying the latent structure

of the model and selecting factors. Section 4 presents a Monte Carlo study that supports

the validity of the method. An empirical analysis demonstrates how our method can be

applied, and how it uses the information available in the data in comparison with classical

EFA. Section 5 concludes.

2 The Model

This section introduces our model, the identification conditions for the model and the prior

specification. We develop classical identification conditions for a dedicated factor model.

Under standard regularity conditions, satisfaction of classical identification conditions guar-

antees convergence of the model parameters to asymptotically normal distributions and thus

has a large sample justification in addition to a Bayesian justification (Le Cam, 1986). Thus

we bridge the two approaches.

2.1 A Dedicated Factor Model with Continuous and Binary Mea-

surements

Consider a set ofM continuous and binary measurements arrayed in vector Yi = (Yi1, . . . , YiM)′

for individual i, i = 1, . . . , N , and matrix Y = (Y1, . . . , YN)′ for the whole sample. To ac-

commodate both types of variables, each measurement is assumed to be determined by an

underlying continuous latent variable Y ?
im:

Yim =

Y ?
im, if Yim is continuous,

1[Y ?
im > 0] , if Yim is binary,
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for m = 1, . . . ,M .1 The resulting vector of latent variables Y ?
i = (Y ?

i1, . . . , Y
?
iM)′ is specified

as a function of a set of Q observed variables Xi and K latent factors θi = (θi1, . . . , θiK)′:

Y ?
i

(M×1)
= β

(M×Q)

Xi
(Q×1)

+ α
(M×K)

θi
(K×1)

+ εi
(M×1)

, (1)

where the matrix of regression coefficients β captures the effect of the covariates on the

latent variables, denoted X = (X1, . . . , XN)′ and Y ? = (Y ?
1 , . . . , Y

?
N)′ respectively. The

correlation between the measurements conditional on Xi arises from the factors with loadings

α. The residual idiosyncratic terms (“uniquenesses”) are denoted εi = (εi1, . . . , εiM)′. In

compact notation, the unobserved components of the model are denoted θ = (θ1, . . . , θN)′

and ε = (ε1, . . . , εN)′, respectively.

In classical EFA, the dimension of the factor covariance matrix is estimated using a variety

of criteria. Various ad hoc rules for allocating meaurements to factors are used (Gorsuch,

2003). As in classical EFA we assume that the measurements are dedicated, i.e., that each

measurement loads on at most a single factor. If a measurement does not load on any factor

the measurement is discarded from the model. In classical EFA, measurements that load on

multiple factors are also discarded. Our analysis improves on this procedure. The position

of the non-zero elements in the factor loading matrix is not fixed a priori, but is determined

during estimation along with the number of factors, which is not imposed but estimated. In

addition, we use all measurements.

To indicate how measurements are uniquely allocated to the factors in θ, we use a matrix

of binary indicators ∆ with the same dimensions as the factor loading matrix α. Each row

of ∆ indicates on which latent factor the corresponding measurement loads. For example,

if the mth measurement is associated with factor k, then the mth row ∆m is the indicator

vector ek:

∆m = (0, . . . , 0, 1︸︷︷︸
kth element

, 0, . . . , 0) ≡ ek. (2)

When a measurement does not load on any factor, the corresponding row of ∆ only contains

zeros (denoted vector e0). Under our assumptions, no measurements may load on more than

one factor, though any measurement may load on no factors, i.e.,
∑

k∆mk ≤ 1.

Since neither the number of factors nor the structure of the factor loading matrix are

specified a priori, the indicator matrix∆ is one of the unknowns of the model to be estimated

1We only consider continuous and binary measurements in this paper, because of our empirical application
where such measurements are available. The methodology can be extended to any other types of discrete
measurements with an underlying continuous latent variable.
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from the data. This matrix representation is convenient for the implementation of the

factor search procedure introduced in Section 3. The values assumed by ∆ determine how

measurements are allocated to the different dedicated factors, which factors are shut down

(zero columns of ∆), and the number of factors underlying the data (the number of non-zero

columns). Indicator matrix ∆ has been widely used in variable selection models (Geweke,

1996; George and McCulloch, 1997). In the framework of factor analysis, it is used by

Carvalho et al. (2008); Frühwirth-Schnatter and Lopes (2012); Chen et al. (2011). Our

approach departs from these papers because we use a dedicated structure for the factor

loading matrix and correlated factors.

2.2 Classical Identification

This section presents and discusses classical identification strategies used in factor analysis.

We introduce a theorem for the identification of dedicated factor models of varying dimen-

sions, explain how to apply classical identification criteria to Bayesian inference and outline

the benefits of this approach.

General Identification Strategy. We center the unobserved components of the model,

θi and εi, at:

E(θi) = 0, Cov(θi) = Ω, (3)

E(εi) = 0, Cov(εi) = Σ, Σ = diag(σ2
1, . . . , σ

2
M).

The components of εi are mutually uncorrelated. Conditional on Xi, the latent factors are

the only source of correlation among the measurements.2 The latent factors are assumed

to be independent of the error terms and of the covariates, i.e., θi ⊥⊥ εi and θi ⊥⊥ Xi. In

addition, we assume that for all measurements, the variances of the idiosyncratic errors are

positive, i.e., σ2
m > 0. In the equations corresponding to the latent variables generating the

binary measurements, these variances are set to 1, i.e., σ2
m = 1. Without further information,

the scales of the corresponding latent variables Y ?
i are not identified.

We follow traditions in factor analysis and only consider identification based on pop-

ulation means and covariance matrices.3 Our assumptions imply the following covariance

2Cunha and Heckman (2008), Appendix A, show how the measurements can be interpreted as derived
demand functions for producing factors θ.

3Bonhomme and Robin (2010) consider identification of factor models based on higher order moments.
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structure for the latent variables Y ?
i :

Cov(Y ?
i | Xi) = αΩα′ +Σ, (4)

where the diagonal elements of Σ corresponding to the latent variables underlying discrete

measurements are restricted to be 1. Identification of the parameters α ,Ω, and Σ from

Cov(Y ?
i | Xi) requires further restrictions.

To secure classical identification, conditions are required that guarantee the existence of

a unique solution for the idiosyncratic variances Σ (the uniqueness problem). This problem

is sometimes addressed by verifying that the number of latent factors does not exceed the

Ledermann bound, i.e., K ≤ φ(M) = (2M + 1 −
√

8M + 1)/2 (Ledermann, 1937; Bekker

and ten Berge, 1997).4 Anderson and Rubin (1956, Theorem 5.6) establish that at least

three non-zero elements are required in each column of the factor loading matrix to achieve

uniqueness.

Given identifiability of Σ, further conditions are needed to guarantee the existence of

a unique solution for the factor loading matrix α and the covariance matrix of the factors

Ω. The “rotation problem” stems from the fact that the covariance in equation (4) remains

unchanged after assigning α̃ = αP and θ̃i = P−1θi, for any arbitrary nonsingular matrix P

of dimension (K ×K).

To solve this problem, various restrictions and normalizations are used in the literature.

First of all, it is necessary to deal with the scaling issue. In the framework of our dedicated

model, we assume that the covariance matrix of the factors, Ω, is of full rank. We fix the

variances of the factors to 1 to set the scales of the loadings:

rank(Ω) = K, diag(Ω) = ιK , (5)

where ιK = (1, . . . , 1)′ is a vector of ones of length K. We denote by R the correlation

matrix of the factors to distinguish it from the covariance matrix Ω. These restrictions leave

the factor loading matrix completely free, compared to alternative and more conventional

identifying restrictions that fix one loading to 1 in each column of α (e.g., Carneiro et al.,

2003; Heckman et al., 2006). Such identifying strategies, however, cannot be implemented

with our algorithm, as we do not know a priori the number of factors, nor how the measure-

ments are allocated to the factors. As a consequence, it is impossible to fix any loadings a

priori.

4The Ledermann bound simply requires that the number of equations be greater than or equal to the
number of model unknowns.
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Additional assumptions are required to identify the model and rule out remaining rotation

problems. Anderson and Rubin (1956) postulate, among other specifications, lower triangu-

larity for the upper square submatrix of α, and versions of this specification have been widely

used in econometrics (see, e.g., Geweke and Zhou, 1996; Aguilar and West, 2000; Carneiro

et al., 2003). In the context of sparse factor modeling, however, the configuration of the zero

elements in the factor loading matrix plays a crucial role for the identifiability of the model,

as a minimum number of non-zero loadings is required in each column of the factor loading

matrix (Anderson and Rubin, 1956). As a consequence, imposing zero elements only on the

upper triangular part of α may not be sufficient for identification. Given that any loading in

the lower triangular part of the matrix may become equal to zero, too many zeros may jeop-

ardize identification. Most applications in sparse factor modeling rely on a lower triangular

structure of α and do not address these potential identifiability issues (West, 2003; Lopes

and West, 2004; Lucas et al., 2006; Carvalho et al., 2008).5 Exceptions are Carneiro et al.

(2003) and Frühwirth-Schnatter and Lopes (2012), who use classical identification criteria

as an integral part of Bayesian inference schemes.

The present paper addresses these problems and achieves more flexibility in this respect.

At the same time, it solves both the uniqueness and rotation problems, apart from trivial

rotations to be discussed below. We assume a dedicated structure and that factors are either

loaded on at least three measurements or not loaded on any measurements, in which case

they are discarded from the model.6 Since measurements appear in blocks of dedicated

measurements, it is unlikely that the first K measurements are actually dedicated to the K

different factors, as suggested by a lower triangular loading matrix with non-zero entries on

the main diagonal.

In the framework of a dimension-varying model where the structure of the factor loading

matrix in terms of zero elements is not known a priori, more general identification conditions

are required and are now presented.

Identification of a Dimension-Varying Model. The following theorem introduces suf-

ficient conditions for identifiability of a dedicated factor model when the allocation of mea-

surements to factors is unknown.

5Most of these papers deal with high-dimensional factor models, where factors are usually loaded by a
myriad of measurements. In such cases, these identification problems are not a concern in practice. However,
in smaller models where these problems may arise, it is important to address them appropriately.

6In our framework with correlated factors, only two measurements are required for each factor, as long
as the correlation between the corresponding factors and the other factors is not zero (Cunha et al., 2010).
We do not use these conditions though, because we allow for zero correlations across factors.
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Theorem 1. Consider a dedicated factor model with K factors satisfying condition (5).

Furthermore, assume that the number of non-zero elements in the kth column of ∆, nk(∆) =∑M
m=1∆mk, is either equal to 0 or at least equal to 3 for all k = 1, . . . , K:

nk(∆) ≥ 3 or nk(∆) = 0, ∀k = 1, . . . , K. (6)

Then the factor model is identified up to trivial rotations. More specifically, the indicator

matrix ∆ is identifiable up to an arbitrary permutation of the columns, whereas the factor

loading matrix α and the submatrix of the correlation matrix Ω corresponding to the non-

zero columns of ∆ are identifiable up to the same permutation of the columns and up to a

sign switch for each column.

Proof. First, we prove identifiability ofΣ. Anderson and Rubin (1956, Theorem 5.1) present

a sufficient condition for identifiability of Σ: the “row deletion” property which states that

if any row of α is deleted, there remain two disjoint matrices that are of the same rank as α.

For a dedicated factor model, rank(α) is equal to the number K1 of non-zero columns of α.

It is easy to verify that condition (6) implies the row deletion property, because regardless of

whether a zero or a non-zero row is deleted, it is guaranteed that in each of the K1 non-zero

columns at least two non-zero factor loadings are still present. Hence, both the diagonal

sub-matrix α1 constructed from the top non-zero elements in each non-zero column as well

as the remaining sub-matrix α2 still has K1 non-zero columns, and consequently the rank is

equal to K1.

Next, consider any alternative representation (α?,Ω?,Σ?) of Cov(Y ?
i | Xi), defined in

(4), where α? and Ω? obey conditions (5) and (6). Identifiability of Σ implies Σ? = Σ,

hence, identifiability of αΩα′, i.e.:

αΩα′ = α?Ω?(α?)′. (7)

Due to the dedicated nature of the factor loading matrix, in both representations at most one

element αm and α?m is different from 0 in each row m. From the restrictions on the diagonal

elements of the covariance matrix of the factors, we obtain the following relationship between

αm and α?m from the diagonal elements of the covariance matrices appearing in (7):

α2
m = (α?m)2, m = 1, . . . ,M. (8)

Thus αm is zero if and only if α?m is equal to zero. Hence, the subset of measurements that do

not load on any factors is the same for both solutions. Thus, further investigations may be

limited to dedicated measurements, where both αm and α?m are different from 0. It follows
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immediately from equation (8) that the factor loadings of any dedicated measurement are

the same for both solutions, apart from sign switching. However, this does not necessarily

imply that the measurement is dedicated to the same factor, i.e., δm might be different from

δ?m, where δm and δ?m indicate the position of the non-zero elements of the indicator vectors

∆m and ∆?
m, respectively.

For further investigation, consider the off-diagonal elements of the covariance matrices

appearing in (7), defining the covariance between any pair (m, l) of dedicated measurements:

αmΩδm,δlαl = α?mΩ
?
δ?m,δ

?
l
α?l . (9)

It follows immediately from (8) and (9) that

Ω2
δm,δl

= (Ω?
δ?m,δ

?
l
)2. (10)

Now consider any pair (m, l) of measurements that are dedicated to the same factor j in

the representation corresponding to α, i.e., δm = δl = j, and Ωδm,δl = Ωjj = 1 because of

the restriction defined in equation (5). Assume that these measurements are not dedicated

to the same factor in the representation corresponding to α?, i.e., δ?m 6= δ?l . Equation (10)

implies that Ω?
δ?m,δ

?
l

= ±|Ωjj| = ±1, and as a consequence the two factors corresponding to

the columns δ?m and δ?l of ∆ have to be perfectly correlated in the alternative representation,

which contradicts the full rank condition for Ω? given by equation (5). Hence, it follows

that δ?m = δ?l whenever δm = δl, meaning that the same subset of measurements is dedicated

to a particular factor in both representations.

This implies that (∆,α) and (∆?,α?) have the same number K1 of non-zero columns.

However, the position of the non-zero columns is not unique and ∆ is identifiable up to

column switching, i.e.:

∆? = ∆Pρ, (11)

where the (orthonormal) rotation matrix Pρ corresponds to a permutation matrix of the

columns. Furthermore, α is identified up to the same permutation of the columns as well as

a possible sign switching, see (8):

α? = αPρP±, (12)

where P± = diag(±1, . . . ,±1).
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Finally, let Ω1 and α1 be, respectively, the submatrix of the correlation matrix Ω and

the factor loading matrix α corresponding to the non-zero columns of ∆. From (7) and (12)

it follow that7

α1Ω1α
′
1 = α?1Ω

?
1(α?1)

′ = α1(Pρ)1(P±)1Ω
?
1(P±)′1(Pρ)

′
1α
′
1,

and, hence:

Ω?
1 = (P±)′1(Pρ)

′
1Ω1(Pρ)1(P±)1.

This implies identifiability of Ω1 up to column switching and sign switching.

Theorem 1 only achieves identification of the submatrix of Ω corresponding to the non-

zero columns of ∆. Indeed, the covariances between the unidentified factors—those that are

not loaded by any factors—as well as the covariances between the unidentified factors and the

dedicated factors, are not identifiable in the overall model. However, only the latent factors

actually underlying the measurements are of interest, so that this lack of identification is not

a concern.

Application of Classical Identification Criteria to Bayesian Inference. Identifi-

ability condition (6) is easy to check and very convenient from a computational point of

view, as it only applies to the indicator matrix ∆, and is therefore easily incorporated in

the algorithm introduced in the next section. To do so, we design a prior distribution for

∆ that restricts the sampler to explore regions of the parameter space corresponding to

identified models only (i.e., only indicator matrices satisfying the identification conditions

are sampled).

No further restrictions need to be enforced a priori to resolve the remaining trivial

rotation problems, outlined in the proof of Theorem 1 in equations (11) and (12), namely

identifiability up to sign switching and column switching. The former appears when the

signs of the factor loadings in a given column of α and the sign of the corresponding factor

θi are switched simultaneously. The latter arises from the fact that there is no natural

ordering of the columns of α—they can be permuted, along with the corresponding latent

factors θi, without altering the covariance structure of the measurements. These two trivial

identifiability problems, however, can be addressed a posteriori by reordering the columns of

the loadings matrix and switching the signs of the loadings appropriately (see Subsection 3.4).

7Similarly, (P±)1 and (Pρ)1 are, respectively, the submatrices of P± and Pρ corresponding to the non-
zero columns of ∆.
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Concerning the maximum number of factors, equation (6) implies the following upper

bound on the number of factors that can be extracted from M measurements:8

K ≤ Kmax = min

{
M

3
, φ(M)

}
.

Hence, for a dedicated factor model with M ≥ 4 the requirement of at least three measure-

ments loading on each dedicated factor becomes stronger than the Ledermann bound.9

For the Bayesian inference pursued in this paper, a complete distributional specification

of model equation (1) is required, which goes beyond specifying first- and second order

moments of θi and εi as in equation (3). Cunha et al. (2010) establish nonparametric

identifiability of the distributions of θ and ε. To adapt their results to our model, we would

have to use a Bayesian nonparametric approach (Ghahramani et al., 2007; Paisley and Carin,

2009; Bhattacharya and Dunson, 2011). To avoid the substantial computational challenge

associated with such a Bayesian nonparametric approach, we invoke the following normality

assumptions on the latent factors and on the error terms:

θi ∼ N (0; R) , εi ∼ N (0; Σ) ,

for i = 1, . . . , N .

Practical Bayesian inference would not necessarily impose the strict identifying restric-

tions presented in this section, as they are not required to conduct inference. Learning

about model parameters can indeed take place, even if the model is not identified in a clas-

sical sense (Poirier, 1998). However, a lack of identification can impair interpretation, if for

instance spurious factors are generated. This contradicts the goal of Bayesian exploratory

factor analysis that seeks to uncover a structure of the model that can be easily interpreted.

Nevertheless, this goal can be restored by constraining the sampler to stay in regions of the

parameter space where only (classically) identified models are generated. The next section

introduces our prior specification, and explains how these classical identification conditions

are integrated into our Bayesian inference procedure.

2.3 Elements of Prior Specification

2.3.1 The Prior on the Indicators

The allocation of the measurements to groups of dedicated measurements can be interpreted

as a mixture problem with unknown, but finite, number of components. Let τk denote the

8This upper bound is not strictly required in a panel context, see Cunha et al. (2010).
9See Frühwirth-Schnatter and Lopes (2012).
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probability that a measurement loads on factor k. It does not load on any factor if k = 0.

For each row ∆m of ∆,10 for m = 1, . . . ,M , we assume:

Pr(∆m = ek | τk) = τk, k = 0, 1, . . . , K, (13)

where ek is the indicator vector of length K as defined in equation (2), and
∑K

k=0 τk = 1.

The allocation of each measurement to one of the dedicated groups of measurements can

be seen as a two-step decision, in which we incorporate a hierarchical prior on the indicators

∆. First, with probability τ0 we assume that a measurement does not load on any factor.

In this case, it is uncorrelated with the other measurements and does not contribute to the

extraction of the factors. It is thus implicitly discarded from the model. In the opposite

case, this measurement loads on a latent factor with probability 1− τ0. Conditional on this

event, it is then allocated to one of the K groups of dedicated measurements according to a

set of probabilities τ ? = (τ ?1 , . . . , τ
?
K)′, with

∑K
k=1 τ

?
k = 1. The probabilities of the different

events can thus be written as

τ = (τ0, τ1, . . . , τK)′ = (τ0, (1− τ0)τ ?1 , . . . , (1− τ0)τ ?K)′. (14)

To conduct Bayesian inference, we have to place prior distributions on these parameters.

We assume the following:

τ0 ∼ Beta(κ0; ξ0) , τ ? = (τ ?1 , . . . , τ
?
K)′ ∼ Dir(κ1, . . . , κK) , (15)

where the Beta distribution for τ0 is defined on the support [0; 1] and has mean κ0/(κ0 + ξ0).

It can be specified so as to obtain more or less mass toward 0 or 1, depending on our prior

knowledge about the number of measurements that should be discarded from the analysis.

The Dirichlet distribution on the weights τ ? is quite standard in mixture modeling (see e.g.

Frühwirth-Schnatter, 2006).

Unfortunately, the indicator probabilities specified in equation (13), equipped with the

prior distributions defined in equation (15), result in a prior distribution p(∆) =
∫
p(∆ |

τ)p(τ)dτ that does not guarantee identification of the model. To secure identification, as

discussed in Subsection 2.2, the prior needs to incorporate the restriction that at least three

dedicated measurements have to load on each latent factor. This can be achieved by re-

stricting the distribution of ∆ to the subset D of matrices that correspond to an identified

10∆ is the matrix of binary indicators with the same dimensions as the factor loading matrix α.
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model:11

p(∆ | τ,D) ∝

(
K∏
k=0

τ
nk(∆)
k

)
δD(∆), (16)

where nk(∆) =
∑M

m=1∆mk is the number of elements in the set of measurements dedicated

to factor k, for k = 1, . . . , K, n0(∆) is the number of measurements that do not load on any

factors, and δD(∆) is the Dirac measure that is equal to 1 if ∆ belongs to D, to 0 otherwise.

The subset of indicator matrices D can be formally expressed as:

D =

{
∆

∣∣∣∣∣
K∑
k=1

∆mk ≤ 1 ∀m = 1, . . . ,M, nk(∆) ≥ 3 or = 0 ∀ k = 1, . . . , K

}
.

More flexible hierarchical prior specification. As an alternative, it is possible to spec-

ify individual parameters τ0m for the measurements, to make the probability of inclusion into

the model measurement-specific and independent of the other measurements. The remain-

ing indicator probabilities τ ? are specified to be common to all measurements as before,

i.e., τ ? ∼ Dir(κ1, . . . , κK).12 This minor modification implies that for each measurement

m = 1, . . . ,M , we specify:

τm = (τ0m, (1− τ0m)τ ?1 , . . . , (1− τ0m)τ ?K)′,

and assume that τ0m ∼ Beta(κ0; ξ0).

Our Monte Carlo studies show that this simple modification of the prior considerably

improves the ability of our algorithm to find the measurements that do not load on any

factors (see Subsection 4.1). This result also becomes clear when we derive our MCMC

sampler. When the same τ0 is specified across measurements, its posterior distribution

decreases with the number of correlated measurements. This makes it difficult to retrieve

the number of uncorrelated measurements, as their posterior probability is forced to be the

same for all measurements and can become very small in large models.13

11The normalizing constant of this distribution can be derived in closed-form solution, but is not required
in our analysis.

12The parameters τ? could also be specified as measurement-specific, but our tests indicated that this
specification led to model overfitting.

13More precisely, the posterior mean of τ0 decreases if the number of measurements M increases while
the number of uncorrelated measurements remains fixed, see equation (A6).
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2.3.2 The Prior on the Idiosyncratic Variances

For all continuous measurements Yim, we specify an inverse-Gamma prior distribution on

the variances of the idiosyncratic error terms:

σ2
m ∼ G−1

(
c0; C

0
m

)
, m ∈ Icont,

where Icont ⊂ (1, . . . ,M) is the set of indices corresponding to the continuous measurements,

and c0 and C0
m are scalar parameters denoting the shape and the scale of the distribution. The

inverse-Gamma distribution is defined on the positive support and therefore guarantees that

the variances cannot be negative, preventing some idiosyncratic variances from lying outside

of the admissible parameter range, a phenomenon known as a Heywood case (after Heywood,

1931), in the likelihood analysis of factor models. To specify the hyperparameters, we follow

Frühwirth-Schnatter and Lopes (2012) who develop a data-driven prior that makes use of

the observed covariance matrix SYcont of the measurements and specify the scale parameter

such that:

σ2
m ∼ G−1

(
c0;

c0 − 1(
S−1Ycont

)
mm

)
, (17)

where
(
S−1Ycont

)
mm

is the mth diagonal element of the inverse of the empirical covariance matrix

of the continuous measurements Ycont.
14

2.3.3 The Prior on the Factor Loadings

The indicator matrix ∆ determines the factors to which the different measurements are

dedicated. A direct consequence is that a given factor loading αmk, in row m and column k

of α, will either be equal to zero (if ∆mk = 0), or follow a prior distribution that needs to

be specified (if ∆mk = 1). Following the usual assumptions in Bayesian factor analysis, we

assume that the factor loadings are independent across measurements and adopt the usual

normal-inverse-Gamma family as prior distribution, meaning that conditional on knowing

σ2
m and ∆m, the only non-zero factor loading α∆m in the mth row of the factor loading matrix

α is conditionally normal:

α∆m | σ2
m ∼ N

(
a0m; A0

mσ
2
m

)
, (18)

14Note that if N < Mcont, where Mcont is the number of continuous measurements, the empirical covariance
matrix is not positive-definite and therefore this approach cannot be applied. A prior distribution with pre-
specified scale parameter C0

m has to be used in this case. See Frühwirth-Schnatter and Lopes (2012) for
details.
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where a0m and A0
m are scalar parameters denoting the prior mean and the scale of the variance,

respectively.

The normal-inverse Gamma family has several advantages in the present context. First,

it allows us to integrate the joint posterior distribution p(∆,α,Σ | Y ?,θ,β, τ) over α and

Σ, making sampling from p(∆ | Y ?,θ,β, τ) possible, see Subsection 3.1.1. Second, the prior

defined in (18) induces a more diffuse prior on the factor loadings when measurement error

is larger and implies the following prior distribution for the amount of variance explained by

the corresponding dedicated factor,

(α∆m)2

(α∆m)2 + σ2
m

=
(α̃∆m)2

(α̃∆m)2 + 1
,

where α̃∆m ∼ N (a0m; A0
m). This ratio has the same prior distribution for any two dedicated

measurements m and l, where a0m = a0l and A0
m = A0

l .

By integrating out the indicators, the marginal prior distribution of αmk turns out to be

a mixture of a point mass at zero and a normal distribution with a fixed-scale variance. Such

prior distributions have previously been used in the framework of sparse factor modeling, as

they allow model shrinkage (West, 2003; Lucas et al., 2006; Carvalho et al., 2008; Frühwirth-

Schnatter and Lopes, 2012). The exact form of the mixture is more difficult to derive

analytically in our case, because of the identifying restrictions on ∆. Nevertheless, we only

need the conditional prior distribution specified in equation (18) for Bayesian inference, as

only the non-zero factor loadings need to be sampled.

2.3.4 The Prior on the Regression Coefficients

Let β = (β1 . . . βM)′, where β′m corresponds to the mth row of the matrix of regression

coefficients β. Each of these vectors is assumed to be a priori normally distributed:

βm ∼ N
(
b0m; B0

m

)
, m = 1, . . . ,M,

where b0m is a vector of prior mean parameters of length Q, and B0
m is a (Q×Q)–dimensional

prior covariance matrix.

2.3.5 The Prior on the Correlation Matrix of the Factors

The correlation matrix of the factors is sampled through marginal data augmentation. Before

turning to the details of this procedure in Subsection 3.2.1, it is important to understand how

16



the distribution of the covariance matrix Ω of the latent factors is related to the distribution

of their variances and to the distribution of the corresponding correlation matrix R.

Given the decomposition Ω = Λ
1
2 RΛ

1
2 , where Λ = diag(Λ1, . . . , ΛK) contains the

variances of the factors, Zhang et al. (2006) show that if it is assumed that Ω ∼ W−1K (ν; S),

an inverse-Wishart distribution with ν degrees of freedom, where ν −K + 1 > 0, and scale

matrix S, the joint distribution of Λ and R can be obtained through the transformation

from Ω to (Λ,R) using the corresponding Jacobian J(Ω→Λ,R) = |Λ|K−1
2 :15

p(Λ,R|S) = J(Ω→Λ,R) p(Ω),

= c |S|
ν
2 |Λ|−

ν
2
−1|R|−

(ν+K+1)
2 exp

{
−1

2
tr
(
SΛ−1R−1

)}
. (19)

The hyper parameter S in the inverted-Wishart prior chosen for Ω can either be assumed to

be fixed or a hyper prior p(S) may be assumed for S. Following Huang and Wand (2013),

S = diag(s1, . . . , sK) is assumed to be a nonsingular diagonal matrix where the individual

variances follow a Gamma distribution,

sk ∼ G
(

1

2
;

1

2 ν?A2
k

)
, for k = 1, . . . , K, (20)

with ν? = ν −K + 1.16 For the special case where the scale matrix S = diag(s1, . . . , sK) is

a nonsingular diagonal matrix, being either fixed or random, the marginal distribution of R

can be derived in closed-form solution by integrating out Λ of equation (19) (Zhang et al.,

2006, see also Barnard et al., 2000, Section 2.2):

p(R|S) =

∫
p(Λ,R|S)dΛ = 2νK/2ΓK(ν/2)|R|−

(ν+K+1)
2

(∏
k

rkk

)− ν
2

= p(R), (21)

where rkk is the kth diagonal element of the inverse of R.

It should be noted that the marginal density p(R) of the correlation matrix R given by

(21) does not depend on S, leaving the degrees of freedom parameter ν as the only hyper-

15The inverse-Wishart distribution is parameterized as follows:

p(Ω) = c |S| ν2 |Ω|−
(ν+K+1)

2 exp

{
−1

2
tr
(
SΩ−1

)}
,

with normalizing constant
c = 1/(2νK/2ΓK(ν/2)),

where ΓK(·) is the generalized Gamma function.
16The Gamma distribution in equation (20) is parameterized such that the expectation of sk is equal to

ν?A2
k.
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parameter of this prior. Barnard et al. (2000) discuss how to specify the hyper-parameter ν,

and show that taking ν = K + 1 (i.e., ν? = 2) results in a uniform marginal distribution of

the individual correlations. Increasing the hyper-parameter ν induces bell-shaped distribu-

tions by assigning a prior probability to neighborhoods of ±1 that goes to 0 as ν increases,

bounding the correlations away from ±1.

The degrees of freedom ν of the inverse-Wishart distribution plays an important role

in the tuning of our algorithm. Intuitively, the stronger the correlation among the latent

factors a priori, the more likely a larger number of latent factors will be favored. Some

factors might indeed be split into several highly-correlated factors when the prior allows for

high correlations. This “factor splitting” problem is at odds with our goal of generating a

sparse and interpretable structure, as it can result in an overfitting of the number of factors,

where some of them appear to be redundant in explaining the data.

In addition, according to Theorem 1, the full rank condition for the correlation matrix

R also plays an important role for the identification of the indicator matrix ∆. If only a few

measurements load on a particular factor, then the information contained in the measure-

ments might not be sufficient to bound the posterior distribution away from regions where

R is rank deficient. The prior on R secures the identifiability of ∆.

To address these issues, the degrees of freedom ν of the prior on the correlation matrix

can be tuned to bound the posterior away from regions of unidentifiability. For further

illustration, Figure 1 shows the marginal prior distribution p(maxj 6=k |Rjk|) of the largest

correlation coefficient appearing in R, as well as the prior distribution p(min[eigen(R)]) of

the minimum eigenvalue of R for the case with K = 20 corresponding to the value chosen in

our empirical study in Subsection 4.2. By varying ν from 21 to 30, we observe a considerable

effect of ν. Choosing ν = 25, as we will do in Subsection 4.2, bounds the prior sufficiently

away from regions where R is rank deficient and hence violates the identifiability conditions

provided by Theorem 1.

It should be emphasized once more, that whether S is random as in the prior suggested by

Huang and Wand (2013), or fixed, does not change the prior p(R), leaving Bayesian inference

invariant to this prior. However, it turns out that the prior of S influences the efficiency of

the marginal data augmentation algorithm we use for inference, see Subsection 3.2.1, and

mixing improves when S is random rather than fixed.

Finally, the marginal data augmentation algorithm will require sampling Λ from the

conditional distribution p(Λ | R) for a given value of R. Under the random prior for S, we

sample from the joint prior p(Λ,S | R) = p(Λ | S,R) p(S | R) = p(Λ | S,R) p(S), where

p(S | R) = p(S) is equal to the prior of S, and the conditional distribution ofΛ | S,R can be

deduced from equation (19) using p(Λ | R,S) = p(Λ,R | S)/p(R | S) = p(Λ,R | S)/p(R).
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Figure 1: Marginal prior distributions of the maximum correlation in absolute value
(p(maxj 6=k |Rjk|), left panel) and of the smallest eigenvalue (min[eigen(R)], right panel) of
the correlation matrix R in a model with K = 20, for different degrees of freedom for R.
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Notes. Kernel density estimation based on 105 draws from the prior distribution of R.

It can be shown that each single variance Λk | sk,R follows an inverse-Gamma distribution

with sk being drawn from the prior, i.e.:

sk ∼ G
(

1

2
;

1

2 ν?A2
k

)
, Λk | R, sk ∼ G−1

(
ν

2
;
skr

kk

2

)
. (22)

If the scale matrix S is fixed, then Λk | R, sk is sampled conditional on that value.

3 Bayesian Inference

Our inference approach is fully Bayesian and combines the likelihood function derived from

model specification (1) under the assumptions on the latent factors θi and on the error terms

εi specified in Subsection 2.2 with the prior distributions formulated in Subsection 2.3.

Our model contains a particular combination of ingredients (dedicated and correlated fac-

tors, dimension-varying structure, identification constraints) that requires a new procedure

for Bayesian inference, based on Markov chain Monte Carlo (MCMC) methods.

For the fully specified model we consider in the present paper, the identification conditions

formulated in Theorem 1 guarantee identifiability of Φ = {∆,α,β,Σ,R}17 in the classical

17∆ is the matrix of binary indicators with the same dimensions as the factor loading matrix α, β
is the matrix of regression coefficients capturing the effects of the covariates on the latent variables (see
equation (1)), Σ are the idiosyncratic variances (see equation (3)), and R is the correlation matrix of the
factors.
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sense that any two solutions Φ and Φ′ yielding the same likelihood for all possible realizations

Y , i.e., p(Y | Φ) = (Y | Φ′), are identical up to column and sign switching.

Within a Bayesian framework, the issue of identifiability is, in general, much less relevant.

Any proper prior p(Φ) will turn a well-specified likelihood function p(Y | Φ) into a proper

posterior distribution p(Φ | Y ) by means of Bayes’ theorem, p(Φ | Y ) ∝ p(Y | Φ) p(Φ),

even if positive prior probability is assigned to subspaces of the parameter space containing

solutions that are not identified in the classical sense defined above. However, when it

comes to practical Bayesian inference, such a posterior distribution does not necessarily

lead to sensible estimates of the unknown parameters, if inference is based on averages of

MCMC draws from the posterior distribution. To avoid the ambiguity inherent in a posterior

distribution derived from the likelihood of an unidentified model, we pursue a more rigorous

approach in the present paper and constrain the posterior p(Φ | Y ), by assigning positive

prior probability p(Φ) only to parameters Φ that are identified in the classical sense defined

above.

Several computational challenges have to be overcome in implementing this approach.

First, we develop a new search procedure to select the dimension and the structure of the

latent part of the model, without jeopardizing the identification condition (Subsection 3.1).

Second, allowing for correlated factors calls for a new sampling scheme of the correlation

matrix in a dimension-varying model (Subsection 3.2).

3.1 MCMC Sampling Scheme to Produce Identified Models

Implementing the classical identifying conditions regarding the minimum number of mea-

surements dedicated to each factor in equation (6) introduce nonstandard difficulties in a

MCMC sampling scheme. To address this problem, we develop a new algorithm that pro-

duces classically identified models.

To extract meaningful factors and factor loadings from model (1), a value has to be

assigned to the indicator matrix∆. Different approaches have been proposed in the literature

to estimate dimension-varying models. The most popular is the reversible jump Markov chain

Monte Carlo (RJMCMC) algorithm of Green (1995), which can be designed to visit models of

different dimensions during sampling. However, this sampler has some limitations. First, it

requires that the analyst specifies alternative models to be compared in the algorithm. When

there is no a priori knowledge about the structure of the factor loading matrix, nor about

the number of factors, the number of potential models underlying the data is prohibitively

large. Our Bayesian search procedure operates on the set of all possible matrices ∆, among

the (M ×K)–dimensional indicator matrices belonging to the identified set D, and allows us
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to choose its value from the data. Second, RJMCMC requires running preliminary analyses

for each of the alternative models to generate sensible proposal distributions (Lopes and

West, 2004), which can be computationally very demanding and therefore impractical for

application to large models.

To remedy these problems, alternative approaches relying on the Metropolis-Hastings

algorithm (henceforth M-H, see Hastings, 1970; Chib and Greenberg, 1995) have been pro-

posed. Borrowing from the literature on mixture modeling, the M-H sampler can, for in-

stance, be tailored to implement dimension-changing moves that, at each MCMC iteration,

attempt to merge some existing factors to shrink the dimension of the model, or, on the

contrary, to split some existing factors to expand the model (“split & merge moves,” see

Richardson and Green, 1997). Alternatively, the sampler can attempt to introduce new

factors sampled from their prior distribution, or to delete existing factors at each MCMC

step (“birth & death moves,” see Stephens, 2000). Again, the major difficulty with these

approaches in large models is finding appropriate proposal distributions that will gener-

ate candidates for the split/merge or birth/death moves that are likely to be accepted as

identified models.

The identifying requirements of our model (more specifically, the need to have at least

three measurements dedicated to each factor), along with the specification of correlated

factors, create nonstandard difficulties and prevent most MCMC algorithms from moving

quickly enough through the parameter space to reach the stationary distribution of the

parameters. This is a well-known issue in MCMC sampling. Recently, new approaches

based on marginal data augmentation have been developed to handle these problems. These

methods will be introduced in Subsection 3.2.1 for the sampling of the correlation matrix

of the factors, but it is worth pointing out the analogy between our sampling scheme for

the factor selection and marginal data augmentation methods. Both rely on intermediate

steps in nonidentified models to boost the sampler, and both make sure that the algorithm

always comes back to an identified model after these intermediate steps. But our approach

differs in the sense that it does not introduce additional parameters into the model for this

purpose, but rather relaxes restrictions on some existing parameters. More precisely, MCMC

sweeps are carried out in the unrestricted version of the model (Subsection 3.1.1) to generate

appropriate proposals for the M-H algorithm that will in the end only generate identified

models (Subsection 3.1.2).
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3.1.1 MCMC Sweeps in the Unrestricted Model

The MCMC sampler we implement to generate proposals draws model parameters and latent

variables sequentially from their posterior distributions, conditioning at each step on the most

recently drawn values of the other parameters and latent variables:

Algorithm 1 (Unrestricted MCMC Sampler). The following steps are performed on

the unrestricted model, i.e., where the constraint of at least three measurements dedicated to

each factor is not enforced. The conditioning on the covariates X is implicitly assumed at

each step:

(A) Sample the indicators ∆, the idiosyncratic variances Σ and the factor loadings α si-

multaneously. Since p(α,Σ,∆ | Y ?,θ,β, τ) = p(α | Y ?,θ,β,Σ,∆)p(Σ | Y ?,θ,β,∆)

p(∆ | Y ?,θ,β, τ), this step can be broken down as follows:

(A-1) Marginalize the distribution of ∆ with respect to Σ and α and sample ∆ from

p(∆ | Y ?,θ,β, τ). Set the factor loadings corresponding to the zero indicators

of ∆ to 0, and denote the remaining non-zero loadings as α∆.

(A-2) Marginalize the distribution of Σ with respect to α∆ and sample Σ from p(Σ |
Y ?,θ,β,∆).

(A-3) Sample the non-zero factor loadings α∆ from p(α∆ | Y ?,θ,β,Σ,∆).

(B) Sample the regression coefficients β from p(β | Y ?,θ,α,Σ).

(C) For each binary measurement Yim, sample the corresponding latent variable Y ?
im from

p(Y ?
im | Yim,θ, βm,αm), for i = 1, . . . , N .

(D) Sample the factors θ and their correlation matrix R jointly from p(θ,R | Y ?,β,α,Σ).

(E) Sample the indicator probabilities τ from p(τ | ∆), or skip this step if τ is integrated

out of the likelihood when the indicators are updated at step (A-1).

Full details about the conditional distributions are provided in the subsequent sections

and in Appendix A. Running this MCMC sampler on our factor model, where the indicators

are sampled sequentially from their full conditional distributions, exhibits a good mixing

of the Markov chain. There is, however, a major problem with this procedure, as it is not

possible to force the algorithm to produce at least three measurements dedicated to each

factor. As a consequence, this MCMC sampling scheme cannot be implemented to sample

models that meet our identifiability requirements. We can nevertheless exploit these good
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properties to generate relevant proposals, and embed these unrestricted MCMC sweeps into

a M-H algorithm to construct a valid MCMC sampling scheme that produces identified

models.

3.1.2 Metropolis-Hastings Moves to Produce Identified Models

The mechanics of our algorithm can be described as follows: at each MCMC iteration, a

few unrestricted MCMC sweeps are performed to sample models where the number of mea-

surements dedicated to each factor is not restricted. These intermediate steps can generate

models that are nonidentified. The nonidentified samples, however, are not saved for poste-

rior inference and only serve the purpose of visiting models of different dimensions to generate

relevant proposals for the M-H moves. When navigating through (possibly) nonidentified

models, not only the indicators ∆ are updated, but so are all of the parameters and latent

variables of the system, in order to adjust all the components of the model. In so doing,

the algorithm is more likely to reach an alternative state, where the factor loading matrix

has a different structure (e.g., a different number of factors). New factors can, for instance,

be introduced progressively into the model, one measurement at a time. The flexibility of

the algorithm is the key to exploring models of different dimensions and finding the latent

structure that is the most representative of the data.

The procedure can be summarized by the following algorithm:

Algorithm 2 (M-H moves with intermediate steps in nonidentified models). Let

ϑ = {Y ?,θ,∆,α,β,Σ,R, τ} denote the set of model parameters and latent variables to be

sampled. At each MCMC iteration, allow the Markov chain to temporarily visit nonidentified

states of the model with unrestricted MCMC sweeps to generate a candidate that will be

accepted (or rejected) by a M-H step. If the algorithm is currently in state ϑ̂0, a candidate
qϑ0 is generated as follows by running 2S intermediate MCMC sweeps based on Algorithm 1:

(M1) Starting from ϑ̂0, run S sweeps of the unrestricted MCMC sampler, by applying steps

(A) to (E) iteratively, to produce a sequence ϑ̂1, ϑ̂2, . . . , ϑ̂S−1, ϑ̂S =: ϑS.

(M2) Starting from qϑS := ϑS, run S sweeps of the unrestricted MCMC sampler in reverse

order to produce a sequence qϑS−1, . . . , qϑ1, qϑ0. Reverse moves are simply performed

by drawing the parameters and latent variables in reverse order, i.e., from step (E)

to step (A).18

18Note that steps (A-1) to (A-3) are still performed in this order in the reverse move. Since they rely
on the marginalization of some parameters, they cannot be performed in reverse order (van Dyk and Park,
2008). This is, however, not in contradiction with our approach, because only step (A) as a whole is relevant
here, the sub-steps being only used to break it down into several pieces that are easier to perform separately.
The complete MCMC sequence in reverse order therefore is: (E), (D), (C), (B), (A-1), (A-2), (A-3).
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(M3) Accept the candidate qϑ0 as the new state if the resulting model is identified (i.e., if

the corresponding q∆0 ∈ D), otherwise reject it and recycle the old state ϑ̂0 as the

new state of the Markov chain.

The number 2S of intermediate steps is a tuning parameter that can be fixed a priori,

or specified as stochastic (see Subsection 3.3 for more details). At this point, it remains

to justify that the resulting Markov chain is valid, in the sense that it meets the minimum

requirements ensuring that it converges to its stationary distribution. We now explain the

intuition behind the theoretical foundations of our approach, and show that our algorithm

satisfies the detailed balance condition.

Transition kernel and detailed balance condition. Let pu(ϑ) denote the stationary

distribution of ϑ in the unrestricted model. For a transition kernel Tu(·, ·) associated with

pu(·), the detailed balance condition is verified if:

pu(ϑ̂) Tu(ϑ̂, qϑ) = pu( qϑ) Tu( qϑ, ϑ̂). (23)

This condition is not necessary but is sufficient to show that pu(·) is a stationary measure

associated with the transition kernel Tu. It implies that the chain is reversible, i.e., that the

probability of being in ϑ̂ and moving to qϑ is the same as the probability of being in qϑ and

moving back to ϑ̂ (Casella and Robert, 2004, definition 6.45).

In the case where the transition is made of several sub-transitions applied sequentially,

like in our unrestricted MCMC sampler, the transition kernel from a state ϑ̂ to a new state
qϑ through steps (A) to (E) is the product of the corresponding sub-transition kernels:

Tu(ϑ̂, qϑ) = pu( qα, qΣ, q∆ | Ŷ ?, θ̂, β̂, τ̂) p( qβ | Ŷ ?, θ̂, qα, qΣ)

× p( qY ? | Y , θ̂, qβ, qα) p(qθ, qR | qY ?, qβ, qα, qΣ) p(qτ | q∆).

Similarly, the transition kernel from qϑ to ϑ̂ in reverse order, from step (E) to step (A), is:

Tu( qϑ, ϑ̂) = p(τ̂ | q∆) p(θ̂, R̂ | qY ?, qβ, qα, qΣ) p(Ŷ ? | Y , θ̂, qβ, qα)

× p(β̂ | Ŷ ?, θ̂, qα, qΣ) pu(α̂, Σ̂, ∆̂ | Ŷ ?, θ̂, β̂, τ̂).

The detailed balance condition implies that both Tu(ϑ̂, qϑ) and the reverse move Tu( qϑ, ϑ̂)

have pu(·) as stationary distribution. Nevertheless, pu(ϑ) is not our targeted distribution,

as it can generate nonidentified models. Rather, we are looking for a stationary distribution

p(ϑ) on the set of identified models that also verifies the detailed balance condition in
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equation (23), i.e.,

p(ϑ) ∝ pu(ϑ) δD(∆), (24)

where ∆ ∈ D, and δD(∆) is the Dirac measure that is equal to 1 if ∆ ∈ D, to 0 otherwise.

A parallel can be drawn between our method relying on intermediate steps in unrestricted

models and Neal (1996)’s tempered transitions, which are designed as a very general approach

to sample from multimodal distributions.19 Nevertheless, it should be emphasized that our

approach departs from Neal (1996), as we relax the identifying restrictions during the inter-

mediate steps, while the tempered transitions always operate on identified models. This is a

major difference between the two approaches. The proof of the detailed balance condition,

however, looks very similar. We present it in Appendix A.1 for the sake of completeness.

The symmetry of the intermediate moves aids in simplifying computations, as it bypasses

the need to calculate the normalizing constant in equation (16). This results in a very simple

form for the acceptance rate: proposed qϑ0 are automatically accepted as a new state of the

model if their corresponding indicator matrix q∆0 belongs to the identified set, otherwise

they are rejected.

The MCMC sweeps performed to sample the parameters and the latent variables of the

model are straightforward to implement, except for the correlation matrix of the latent

factors, which requires some elaboration. We now discuss this specific stage, and explain the

technical improvements of our sampling scheme over previous algorithms.

3.2 Sampling the Latent Factors and their Correlation Matrix in

a Dimension-Varying Model

Ours is the first paper in the Bayesian factor analysis literature to consider correlated factors

in a dimension-varying model where identification of the model is secured explicitly. This

feature of the model is challenging for the sampling procedure in two respects. First, drawing

a correlation matrix is not trivial, because of the combination of fixed diagonal elements and

positive-definiteness. Since no natural conjugate distribution exists for this matrix, the usual

Gibbs sampler cannot be implemented. Subsection 3.2.1 discusses this issue and presents

the approach we adopt that relies on marginal data augmentation. Second, the dimension

of the latent part of our model is not fixed and varies during sampling. This implies that

correlation matrices of different sizes, dependent on the number of latent factors, have to

19The tempered transitions are performed through the use of a sequence of intermediate distributions
that are “heated” by different temperature parameters to flatten the likelihood function, thus allowing
bigger moves.
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be sampled through MCMC iterations. Subsection 3.2.2 introduces the block sampling we

develop to cope with this problem.

3.2.1 Sampling the Correlation Matrix through Marginal Data Augmentation

We borrow from the literature on marginal data augmentation to sample the correlation

matrix of the factors and to boost the MCMC sampling of the factor loadings and of the

factors at the same time. To the best of our knowledge, this simple idea has not been applied

to factor models with correlated factors in the literature.

Marginal data augmentation (henceforth MDA, see Meng and van Dyk, 1999; van Dyk

and Meng, 2001; Imai and van Dyk, 2005), also referred to as parameter-expanded data

augmentation (Liu and Wu, 1999), has recently been proposed as a very general and simple

way to improve the convergence and the mixing of Markov chains in MCMC sampling. We

apply this approach to achieve this primary goal of boosting convergence and mixing, but

also, and maybe more importantly, to develop a new sampling scheme for the correlation

matrix that turns out to be easier to implement than existing methods based on the M-H

algorithm (Zhang et al., 2006; Liu and Daniels, 2006; Liu, 2008).

MDA consists of expanding the parameter space, at each MCMC iteration, by introducing

a set of parameters that do not belong to the original model, and that usually cannot be

identified from the data. Once the model has been transformed appropriately with these

so-called “working parameters,” a Gibbs sweep is performed in the expanded model (which

is usually easier to perform than in the original model), and the model is finally transformed

back to its original form. It is important to note that this expansion of the model is temporary

and is only used as a computational device. The draws produced in the expanded model are

not saved for posterior inference. Only the values of the parameters resulting from the final

transformation are saved.

In our factor model, the variances of the factors are restricted to 1 for purposes of identi-

fication. This restriction can easily be relaxed to expand the model, using these variances as

working parameters. Assume for now that the dimension of the model is fixed at K factors,

and that we are therefore sampling a correlation matrix R of dimension (K × K) in the

original model, and a covariance matrix Ω = Λ
1
2 RΛ

1
2 , where Λ = diag(Λ1, . . . , ΛK), of

same dimensions in the expanded model. At a given MCMC iteration (t), MDA proceeds as

follows when it comes to the update of R:

• Model Augmentation. Expand the model with the variances of the factors Λ used

as working parameters. Since no information is available about these parameters condi-

tional onR(t−1), they are sampled from the prior distribution p(Λ | R(t−1)) according to
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equation (22), where the current value rkk(t−1) is used to sample each Λk, k = 1, . . . , K

conditional on a scale matrix S
(t)
prior drawn from the prior p(S). Call this draw Λ

(t)
prior,

and transform the model as follows, for i = 1, . . . , N :20

α̃(t) = α(t)
(
Λ

(t)
prior

)− 1
2
, θ̃(t) = θ(t)

(
Λ

(t)
prior

) 1
2
,

so that in the expanded model θ̃
(t)
i ∼ N

(
0; Ω̃(t)

)
with

Ω̃(t) =
(
Λ

(t)
prior

) 1
2
R(t−1)

(
Λ

(t)
prior

) 1
2
.

• Update the covariance matrix in the expanded model using a Gibbs step:

Ω(t) | S ∼ W−1K
(
ν +N ; S + θ̃(t)′θ̃(t)

)
,

to obtain the updated working parameters Λ
(t)
post from the diagonal of Ω(t).

Concerning the scale matrix S applied in this step, it could be set equal to the scale

matrix sampled from the prior, i.e., S = S
(t)
prior. Alternatively, S could be updated

prior to sampling Ω(t) by sampling S(t) from p(S | Ω) conditional on Ω = Ω̃(t). The

corresponding posterior p(S | Ω) is easily derived,

p(S | Ω) ∝ p(Ω | S)p(S),

∝ |S|
ν
2 exp

{
−1

2
tr(SΩ−1)

} K∏
k=1

s
−1/2
k exp

{
− sk

2A2
k(ν −K + 1)

}
,

∝
K∏
k=1

(sk)
ν+1
2
−1 exp

{
−sk

2

(
(Ω−1)kk +

1

A2
k(ν −K + 1)

)}
,

and yields

sk | Ω ∼ G
(
ν + 1

2
;

(Ω−1)kk + [A2
k(ν −K + 1)]−1

2

)
.

• Transform back to the identified model:

α(t) ←− α̃(t)
(
Λ(t)

post

) 1
2 , R(t) =

(
Λ(t)

post

)− 1
2 Ω(t)

(
Λ(t)

post

)− 1
2 ,

θ(t) ←− θ̃(t)
(
Λ(t)

post

)− 1
2 ,

20Here it is assumed that α and θ have already been updated in the current MCMC iteration, hence their
superscript (t); α is the factor loading matrix, see equation (1).
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where the left arrows (←−) indicate that the current values of the factor loadings and

of the latent factors at iteration (t) are replaced by the corresponding transformed

values. Note that this backward transformation is deterministic, given the updated

variances Λ
(t)
post.

These transformations are the mechanism of the marginal data augmentation that allows

the sampling of the correlation matrix, improving the mixing of the Markov chain at the

same time.

3.2.2 Block Sampling of the Correlation Matrix Jointly with the Factors

We specify a maximum number K of factors a priori, but not all of them will ultimately

be loaded by measurements.21 We make a distinction between the factors that have an

impact on the measurements and belong to the identifiable set (those loaded by at least

three measurements, called “active” factors) and those that do not (the “inactive” factors,

which are not loaded by any measurements). The former correspond to the non-zero columns

of the factor loading matrix α, and the latter to the zero columns. The inactive factors can

be regarded as potential new factors, as it can happen, at any time during sampling, that

some measurements start loading on them. Conversely, existing (active) factors can be shut

down and become inactive if their dedicated measurements no longer load on them at a given

MCMC iteration.

Assume that at a particular stage there are K1 active factors and K2 inactive factors, with

K1 +K2 = K. The latent factors are reordered such that the K1 active factors (θ1) appear

first and the K2 inactive factors (θ2) appear in the last positions of θ. The rows and/or

columns of the different parameters and latent variables are thus reordered and partitioned

as follows:

θ =
(
θ1 θ2

)
, α =

(
α1 α2

)
, R =

(
R11 R12

R21 R22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
, (25)

where R is the correlation matrix of the factors, and Ω is the corresponding covariance

matrix (see equation (3)). A naive approach would be to sample the latent factors (active

and inactive) and their correlation matrix sequentially through Gibbs sampling. However,

mixing can be very poor in latent variable models. In our case, the draws of the correlations

of the inactive factors would be highly autocorrelated across MCMC iterations if we sampled

in this fashion. This would, in turn, affect the search procedure, as the sampled inactive

21If the sampler actually reaches the maximum number of factors K, the model should be reestimated
with a larger value of K ≤ Kmax, as more factors may be underlying the data.
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factors—the potential new factors—would be very similar across MCMC iterations, making

it difficult for the algorithm to pick new factors to better fit the data.

To remedy the slow mixing problem, the inactive factors and the covariance matrix Ω

are sampled simultaneously in the augmented model of the marginal data augmentation

procedure. This blocking strategy has been shown to substantially improve mixing and

convergence (Liu et al., 1994). The sampling procedure is carried out in two steps. First,

since the likelihood does not depend on the inactive factors (since α2 = 0), these factors θ2

can be integrated out and the active factors can be updated marginally (van Dyk and Park,

2008). The marginal conditional prior distribution of θ1i is N (0; Ω11), and the updated

conditional posterior is derived as follows, for all i = 1, . . . , N :22

θ1i | Ω11, . . . ∼ N (Aθ1aθ1i ; Aθ1) ,

with:

(Aθ1)
−1 = α1

′(Σ)−1α1 + (Ω11)
−1, aθ1i = α1

′(Σ)−1(Y ?
i − βXi).

Once θ1 has been updated, the inactive factors and the whole covariance matrix can be

sampled simultaneously. Their joint distribution, in the expanded model, is proportional to:

p(θ2,Ω | θ1,Y ,α,Σ) ∝ p(θ2 | Ω,θ1) p(Ω12,Ω22 | Ω11) p(Ω11 | θ1),

revealing that the covariance matrix Ω can be sampled by blocks. For this purpose, we

develop a sampling procedure that relies on well-known properties of the inverse-Wishart

distribution.23 More precisely, we exploit the fact that the matrix Ω11 is independent of

the block matrices (Ω−111 Ω12 and Ω22·1), where Ω22·1 = Ω22 − Ω21Ω
−1
11 Ω12 is the Schur

complement of Ω11 in Ω, both a priori as well as a posteriori. Hence, we split the scale

matrix S appearing in the inverse Wishart prior and, respectively, posterior distribution of

Ω in a similar way as in equation (25):

S =

(
S11 S12

S21 S22

)
.

22To make the notation lighter, in this section we drop the tildes characterizing the transformed parameters
of the MDA, although all these steps are carried out in the augmented model described in Subsection 3.2.1.

23See Theorem A1 in Web Appendix, available at http://heckman.uchicago.edu/BayesFA.
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Using the prior Ω11 ∼ W−1K1
(ν −K2; S11), in a first step we sample the block matrix Ω11

conditional on θ1 from the posterior

Ω11 | θ1 ∼ W−1K1
(ν −K2 +N ; S11 + θ′1θ1) .

Given the independence of the blocks stated above, in a second step, we sample the Schur

complement Ω22·1 and the product Ω−111 Ω12 jointly:

Ω22·1 ∼ W−1K2
(ν; S22·1) ,

Ω−111 Ω12 | Ω22·1 ∼ NK1×K2

(
S−111 S12; S

−1
11 ⊗Ω22·1

)
.

Once these different blocks of the covariance matrix have been sampled, the inactive factors

are sampled in a final step from the conditional distribution p(θ2 | Ω,θ1) independently for

all i = 1, . . . , N :

θ2i | Ω, θ1i ∼ N
(
(Ω−111 Ω12)

′θ1i; Ω22·1
)
.

This block strategy of sampling the latent factors and their correlation matrix simultaneously

dramatically improves the mixing of the algorithm and, in turn, facilitates factor selection.

3.3 Prior Specification and MCMC Tuning: Some Guidelines

The prior parameters should be carefully specified for the factor selection to work appropri-

ately. Those discussed below, especially, play a crucial role and require particular attention.

The prior variance of the non-zero factor loadings defined in (18) is proportional to the

idiosyncratic variance of each measurement, with a scale parameter A0
m that determines how

diffuse the distribution is. Subsequently, we make use of a fixed scale prior, where A0
m = A0.

Although it is usually not recommended to specify vague priors in latent variable models

(e.g., A−10 = 0), as the near impropriety of the resulting posterior distribution can lead to a

slow mixing of the sampler (Natarajan and McCulloch, 1998), being too informative should

also be avoided. Too small a scale parameter would shrink the distribution of the loadings

toward 0, especially in cases where measurement error is small. This could in turn induce

an overfitting of the number of latent factors, where many factor loadings would have a low

magnitude.

The degrees of freedom ν in the prior of the covariance matrix of the factors in the

expanded model defined in (19) determines the marginal prior distribution of the factor

correlations. Taking ν = K + 1 such that the single correlations are uniformly distributed
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on [−1; 1] (see Barnard et al., 2000) can be problematic in high-dimensional models. It may

indeed result in an overestimation of the number of latent factors, where many factors would

appear to be extremely highly correlated and therefore redundant to explain the data. To

cope with this factor splitting problem, it might be helpful to increase ν to prevent duplicate

factors from emerging. As outlined previously in Subsection 2.3.5 and at the beginning of

this section, increasing ν is also important with respect to ensuring prior identification in

cases where the likelihood function yields considerable support for unidentifiable regions of

the parameter space.

The prior on the indicators’ probabilities τ (see equation (13)) needs to be tailored

appropriately for the factor selection process. Due to the identifying constraints on the

indicator matrix ∆, the implied prior distribution on the number of factors appears to be

very tedious to derive analytically. It can however easily be simulated. Table 2 shows the

prior probabilities of the numbers of factors for some models studied in the Monte Carlo

experiment.

When τ0 is specified individually for each measurement (see Subsection 2.3.1), the impact

of its prior specification vanishes if the Beta distribution is specified as symmetric (i.e., with

equal shape parameters). This might appear counterintuitive at first sight, as one could

expect a crucial role of the prior distributions of τ0 in the Bayesian updating process when

only one observation of ∆m is available at each MCMC iteration. However, with a single

observation at hand, only the mean of the prior distribution counts, and this one is not

affected by a change of scale of the prior parameters.24 This explains why there is no

difference between using a uniform prior for τ0 (i.e., Beta(1; 1)) and a very informative prior

such as a U-shaped distribution reflecting the belief that τ0 is either close to 0 or to 1 (e.g.,

Beta(0.1; 0.1)).

The number 2S of intermediate steps determines how long the algorithm navigates

through expanded models to generate proposals for the M-H moves, and turns out to play an

important role in the convergence of the algorithm. It can be specified as fixed or stochastic

(e.g., sampled from a Poisson distribution at each MCMC iteration) to introduce more flex-

ibility in the M-H algorithm. In some situations, for instance when the sampler is stuck in

one region of the parameter space and does not move, additional intermediate steps can be

performed to allow the algorithm to reach another state.

Convergence of the M-H algorithm can be slow in large models, due to the huge dimension

of the parameter space. The choice of the initial value for the indicator matrix ∆ therefore

24The prior mean of τ0 is κ0/(κ0+ξ0), and this ratio is not affected by a change of scale of the parameters,
as long as these parameters remain proportional. This can also be seen from the ratio of the marginal
likelihoods of ∆ in equation (A9), which remains the same after such a change of scale.
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plays an important role. Instead of choosing this matrix at random, we suggest to run a

preliminary MCMC analysis based on the unrestricted sampler (Algorithm 1) to generate an

appropriate starting value. This sampler can be implemented to explore the parameter space

more quickly, but it will generate a factor loading matrix that is only partially identified, in

the sense that it contains columns with at least three non-zero factor loadings, but possibly

also columns with less than three non-zero values. Such a partially identified matrix can

however be used to generate a starting value for ∆ that corresponds to an identified model,

by keeping only the columns with at least three non-zero values. The measurements dedicated

to unidentified factors (with less than two dedicated measurements) can then be allocated

either at random or according to our allocation rule to the identified factors. This approach

based on the partial identification of the factor loading matrix can be theoretically justified

(see, for instance, Sato, 1992, Theorem 3.9), and it can considerably reduce the need for a

long burn-in period in practice.

3.4 Posterior Inference

The use of indicators makes it very easy to summarize the structure of the factor loading

matrix. For example, the number Dk of measurements that are dedicated to a given factor

k, for k = 1, . . . , K, the number of discarded measurements D0, the number of active factors

K1, or the number of included measurements M̃ (those actually loading on a latent factor),

can be computed as:

Dk =
M∑
m=1

1[∆m = ek] , K1 =
K∑
k=1

1[Dk 6= 0] , M̃ =
K∑
k=1

Dk, D0 = M − M̃.

These quantities can all be estimated using the corresponding posterior modes or posterior

means over the MCMC draws, and are not affected by the column switching problem, nor

by the sign switching problem. These two problems should, however, be dealt with (i.e.,

identification of the model should be restored a posteriori) to be able to interpret the latent

structure of the factor loading matrix.

Since there is no natural ordering of the columns of the factor loading matrix, different

approaches can be adopted to solve the column switching problem. We suggest a reordering

based on the top elements of the columns, i.e., the first row lk in each active column k

containing a non-zero factor loading, starting from the top of the matrix. Because of the

dedicated structure of the factor loading matrix, each of these top elements corresponds to a

different measurement. At each MCMC iteration, the non-zero columns of α are reordered

such that the top elements appear in increasing order, i.e., l1 < l2 < . . . < lK . Finally,
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the rows and columns of the correlation matrix R of the factors should also be switched

accordingly.

Regarding the sign switching issue, a simple sign switch can be carried out on the MCMC

draws to reestablish the consistency of the signs across iterations. To do so, one factor

loading is used as a benchmark in each column (e.g., the factor loading with the highest

posterior probability of being different from zero in each column25). The analyst determines

which sign each benchmark loading should have, and the MCMC draws are then post-

processed. Whenever the benchmark has the wrong sign in a certain column, sign switching

has occurred at the corresponding MCMC iteration and is reversed by switching the signs of

all the loadings that are in the same column (including the benchmark), of the latent factors

corresponding to this column, as well as of the corresponding elements in the correlation

matrix R of the factors.26

The decision on defining the signs of the loadings used as benchmarks should be guided

by the meaning of the latent traits measured by the factors. If a factor captures a positive

trait, like self-esteem, and the corresponding measurements are increasing in this trait, then

it is straightforward to assume that the sign of the benchmark is positive, because a negative

loading would capture the reverse of the trait of interest. The analyst should therefore

always have the underlying literature in mind when carrying out this step, so as not to

produce results that are counterintuitive and hard to interpret.

4 Applications to Simulated and Real Data

4.1 Monte Carlo Study

Data Generation. To investigate the performance of our algorithm, we run a Monte Carlo

experiment using synthetic data simulated from a simplified version of equation (1). Since

the focus of the experiment is on the factor selection process, no covariates are specified

and the measurements are all assumed to be continuous (i.e., Ym = Y ?
m), so as to keep the

specification as simple as possible.

We generate models of different dimensions and denote them byM(M,K0, D,D0), where

M is the total number of measurements, K0 the true number of factors, D the number of

measurements dedicated to each factor, and D0 the number of extra measurements that are

uncorrelated with the other measurements.

25If several factor loadings have the same highest posterior probability (e.g., 1.0), we simply take the first
of them from the top of the matrix.

26Frühwirth-Schnatter and Lopes (2012) use a similar approach to address the sign and column switching
problems.
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Each model is made of M = K0D + D0 measurements that are dedicated to the latent

factors through the following indicator matrix:

∆
(M×K0)

=

[
IK0 ⊗ ιD
0(D0×K0)

]
,

where ιD = (1, . . . , 1)′ is the vector of ones of length D. The uncorrelated measurements (if

any) are placed at the bottom of the vector of measurements, hence the last D0 zero rows

of ∆. For the correlated measurements, each single non-zero factor loading α∆m and each

idiosyncratic variance σ2
m are simulated independently from the following distributions:

α∆m = (−1)φm
√
am, σ2

m ∼ U(0.20; 0.80) ,

φm ∼ Ber (0.5) , am ∼ U(0.04; 0.64) ,

for m = 1, . . . , K0D, where non-zero factor loadings α∆m are assigned a sign at random with

probability 0.5. The remaining D0 uncorrelated measurements are simulated independently

from a standard normal distribution, i.e., σ2
m = 1, for m = K0D + 1, . . . ,M , and the

corresponding last rows of α contain only zero elements. The correlation matrix R of the

factors is sampled as

Ω ∼ W−1K0
(K0 + 5; IK0) , Λ = diag(Ω), R = Λ−

1
2 ΩΛ−

1
2 ,

where Ω is the factor covariance matrix (see equation (3)), and the distribution of R is

truncated to the subspace where all off-diagonal elements are smaller than 0.85 to avoid

extreme cases.27

Model parameters are sampled independently across Monte Carlo replications. Drawing

the factor loadings and the idiosyncratic variances from these uniform distributions results

in measurements with a proportion of noise ρm = σ2
m/(σ

2
m + am) that ranges from 24% to

95% for the correlated measurements. The signal-to-noise ratio is comparable to what we

observe in our real data application. It is worth emphasizing that factor extraction is very

challenging in this context of noisy data.28

We simulate the following eight models, where the number of measurements ranges from

15 to 125, and the number of factors from 3 to 12:

M(15, 3, 5, 0), M(36, 6, 6, 0), M(72, 9, 8, 0), M(120, 12, 10, 0),

27Thus, any simulated R with at least one correlation large than 0.85 is discarded and a new R is
simulated. The operation is repeated until a correlation matrix satisfying this restriction is sampled.

28See Web Appendix for additional Monte Carlo experiments with less noisy data.
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M(17, 3, 5, 2), M(39, 6, 6, 3), M(76, 9, 8, 4), M(125, 12, 10, 5).

Each of these model configurations is used to generate data sets with N = 500 and 1, 000

observations. For each of these data sets, 100 Monte Carlo replications are used.29

Prior Specification and MCMC Tuning. Table 1 displays the values of the prior pa-

rameters specified for this Monte Carlo study. For the correlation matrix of the factors, we

implement the Huang-Wand prior by specifying a stochastic scale matrix S for the inverse-

Wishart of Ω that is updated at each MCMC iteration in the expanded model (see Sub-

section 3.2). The tuning parameter ν? = ν − K + 1 is chosen to induce a uniform prior

distribution on [−1; 1] on the individual correlations of the factors. The prior on the indica-

tor matrix is specified to allow uncorrelated measurements to be easily discarded from the

model. Following Subsection 2.3.1, the probability of a zero row in the factor loading matrix

is specified as measurement-specific. Conditional on the inclusion of the measurements into

the model, the Dirichlet distribution on τ ? is then specified differently for each model size,

so as to generate plausible prior probabilities for the number of factors. Table 2 shows these

prior probabilities for the first four models under investigation. These probabilities were

simulated using a simple accept-reject sampling scheme and the low acceptance rates in the

last column reflect the difficulty in sampling models that meet the identifying restrictions

when drawing only from unrestricted models.

For each Monte Carlo replication, the MCMC sampler is run for a total of 40, 000 iter-

ations, where only the last 20, 000 iterations are saved for posterior inference. The factor

search is carried out with a number of 2S intermediate steps, where S is drawn randomly at

each MCMC iteration as S = 1 + φ, with φ ∼ Poisson (4) .30 The starting values of the pa-

rameters are selected at random, except for the indicator matrix ∆, which is specified after

a pre-MCMC analysis. This preliminary analysis is performed by running the unrestricted

Table 1: Baseline Prior Specification for the Monte Carlo Study

Parameters Values

Indicator matrix κ0 = ξ0 = 0.1 and κ = 1.0 / 0.8 / 0.5 for K0 = 3, 6 / 9 / 12
Idiosyncratic variances c0 = 2.5 and C0

m specified to avoid a Heywood problem
Factor loadings a0m = 0 and A0

m = 3.0
Factor correlation matrix ν? = 2 and A2

k = 1/2 (Huang-Wand prior)

29Therefore, this Monte Carlo experiment relies on 8 (model sizes) × 2 (sample sizes) ×
100 (Monte Carlo replications) = 1, 600 independent data sets.

30Which results in an average number of 10 steps in expanded models.
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Table 2: Prior distribution of the number of factors induced by τ ? ∼ Dir(κ, . . . , κ) in
models with M measurements and K potential factors, conditional on the inclusion of all
measurements. True number of factors in Monte Carlo studies in bold.

M K κ #Factors / Probability Acc.

15 5 1.0 1 2 3 4 5

0.010 0.206 0.576 0.205 0.002 0.125

36 9 1.0 3 4 5 6 7 8 9

0.005 0.051 0.219 0.390 0.269 0.063 0.003 0.041

72 12 0.8 6 7 8 9 10 11 12

0.026 0.104 0.243 0.316 0.222 0.075 0.009 0.041

120 18 0.5 9 10 11 12 13 14 15

0.074 0.151 0.223 0.231 0.170 0.084 0.028 0.014

Notes. Accept-reject sampling scheme. Indicator matrices are sampled from their unrestricted prior dis-
tribution and only those satisfying the identification restrictions are kept. Simulations based on 107 draws.
Acceptance rate in last column.

sampler (Algorithm 1) for 50,000 iterations, starting with the maximum number of potential

factors and a random structure. The value of ∆ from the last iteration is then saved and

used as a starting value, where only the identified factors (those with at least three dedicated

measurements) are kept as active factors. The remaining measurements—those dedicated to

unidentified factors—are assumed to be initially allocated to none of the identified factors.

Baseline Comparison to Classical EFA. We also perform classical exploratory factor

analysis on the simulated data sets and compare the results to those obtained with BEFA.

In a first step, we apply various criteria to select the number of factors. As explained in

the next paragraph describing the results, no clear picture emerges and these criteria do not

manage to uncover the dimension of the latent structure in a consistent way. Therefore, in a

second step we run the factor analysis conditional on the true number of factors. Maximum

likelihood factor analysis is implemented, as this classical factorization method is closest to

our Bayesian approach.31 The results are finally rotated using a Promax rotation, which

generates a sparse factor loading matrix and is thus in line with our approach. Similarly to

BEFA, a reordering of the columns has to be done to allow a comparison of the estimated

factor loading matrix to the true one. This is done by first setting to zero all factor loadings

31Classical estimation was carried out with the R Statistical Package (R Core Team, 2013).
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lower than 0.2 in magnitude, and then reordering the columns to match the true structure

of the factor loading matrix as close as possible.

This comparison helps us assess the benefits of our approach over classical factor analytic

methods. Nevertheless, the comparison should be done carefully, due to some differences in

the implementation of the two approaches. Since classical criteria provide no conclusive

answers to the selection of the number of factors (see Table 5), the maximum likelihood

estimation presented in Table 3 is conducted conditional on the true number of factors.

BEFA, on the contrary, estimates the number of factors using little prior information—the

only prior information is conveyed by the prior distribution of the indicators, so as to generate

plausible values for the number of factors (see Table 2).32 The maximum likelihood approach

does not explicitly use the information that the measurements are dedicated, contrary to

BEFA. However, the cutoff value used to set the factor loadings to zero (0.2) in the classical

approach is based on the minimum value the factor loadings can take in our data generating

process. In real-data applications, practitioners do not have this information and would

typically fix this cutoff at a higher value (e.g., 0.5), thus changing dramatically the final

structure of the factor loading matrix. BEFA does not rely on such cutoff values and therefore

does not make use of this information.

Monte Carlo Results. The results of the Monte Carlo experiments on our eight artificial

models are summarized in Table 3. To grasp the performance of our MCMC sampler, we

compute different statistics based on posterior modes and on the highest probability model

(HPM), which corresponds to the indicator matrix most often visited by the sampler across

MCMC iterations.

The BEFA algorithm manages to recover the true structure of the factor loading matrix in

virtually all cases, as indicated by the hit rates that are all very high. The larger the model,

the more difficult the factor search, especially in this context of very noisy data. More data

available enables the sampler to better recover the full 0/1 pattern of the indicator matrix,

as indicated by the larger hit rates for N = 1000 compared to N = 500 in the column ∆H

for all models. Measurements that actually belong to the model are almost never wrongly

discarded (first four models), and extra measurements—those that are uncorrelated with

the other measurements—are retrieved very accurately (last four models). This last result is

obtained thanks to the hierarchical prior on the indicator matrix with measurement-specific

32Nonetheless, we show in the Web Appendix that the impact of this prior distribution is negligible.
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parameters τ0m, which introduces more flexibility in the estimation of the number of zero

rows of the indicators matrix, especially in large models (see Subsection 2.3.1).33

Table 4 display some information assessing the numerical efficiency of our sampler. In

most cases, Metropolis-Hastings acceptance rates are very high. Low acceptance rates in-

dicate ill-convergence, as the sampler keeps proposing nonidentified models that never get

accepted. In such cases, it is recommended to restart the sampling with different starting

values. To gauge the numerical accuracy of our sampler, we compute inefficiency factors for

the correlations of the factors, the top elements of the factor loading matrix, as well as the

idiosyncratic variances corresponding to the highest posterior probability models (HPM).

Each of these inefficiency factors is computed as the inverse of the relative numerical ef-

ficiency (Geweke, 1989), and measures the number of draws required to achieve the same

numerical precision as an independent sample from the target distribution.34 These factors

are close to 1 in all cases, revealing a very good mixing of our sampler.35 These good prop-

erties are obtained thanks to the marginal data augmentation sampling scheme used for the

correlation matrix, and also to the intermediate steps in augmented models that are not

saved for posterior inference and therefore induce a thinning of the Markov chain. Inference

was conducted with a code written in Fortran for improved speed, and computational time

was assessed on 2.66GHz Intel Xeon CPUs. Running times are displayed in minutes, and

correspond to the total number of 40,000 MCMC iterations, each iteration being made of

2S intermediate steps in augmented models (10 intermediate steps on average).

The last columns of Table 3 show the results obtained from Maximum Likelihood estima-

tion of the factor models with Promax rotation run on the same data sets. This approach is

clearly outperformed by our BEFA method. It turns out to perform reasonably well on small

models, but exhibits difficulties in recovering the true pattern of the indicator matrix when

model size increases—although it is run conditional on the true number of latent factors and

the true value of the minimum factor loading is used as threshold. The larger the model,

the worse the performance: Too many correlated measurements turn out to be discarded

(cf. columns for D0) and some factor loadings equal to zero in the true model are estimated

as different from zero (cf. column for n∆). The comparison between the two approaches is

33We ran the same simulations with the initial prior specification on τ assuming a common parame-
ter τ0 across measurements, and as expected, the number of uncorrelated measurements D0 was always
underestimated, especially in large models. See Web Appendix for more details.

34For example 100, 000 draws from a sampler with an inefficiency factor of 10 will have the same numerical
accuracy as 10, 000 draws from an independent sample. Inefficiency factors computed as explained in Kastner
and Frühwirth-Schnatter (2014).

35Larger inefficiency factors would be obtained if they were not calculated for HPM—i.e., if they took
into account model uncertainty due to the unknown structure of the factor loading matrix α. However,
researchers are usually interested in the final structure of α (HPM in this case), hence the results reported.
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Table 4: Monte Carlo Experiment for BEFA: Sampling efficiency and computational time.

Inefficiency factors Time

Model N M-H acc. Pr(acc > .8) pH R αlead Σ in min.

M(15, 3, 5, 0) 500 0.96 0.98 0.97 1.11 1.10 1.10 1.88
1000 0.99 1.00 1.00 1.07 1.04 1.05 3.29

M(36, 6, 6, 0) 500 0.95 0.96 0.91 1.11 1.09 1.09 6.91
1000 0.99 1.00 0.99 1.04 1.02 1.02 10.42

M(72, 9, 8, 0) 500 0.98 0.99 0.92 1.06 1.05 1.05 19.93
1000 1.00 1.00 0.98 1.02 1.01 1.01 27.16

M(120, 12, 10, 0) 500 0.96 0.99 0.82 1.09 1.08 1.08 67.55
1000 0.99 0.99 0.97 1.02 1.01 1.01 84.14

M(17, 3, 5, 2) 500 0.95 0.96 0.86 1.14 1.13 1.13 1.99
1000 0.97 0.98 0.91 1.08 1.07 1.07 3.48

M(39, 6, 6, 3) 500 0.94 0.95 0.77 1.14 1.12 1.12 7.52
1000 0.98 0.98 0.84 1.07 1.06 1.06 11.20

M(76, 9, 8, 4) 500 0.96 0.97 0.66 1.10 1.09 1.09 21.11
1000 0.99 0.99 0.82 1.03 1.01 1.01 28.84

M(125, 12, 10, 5) 500 0.95 0.98 0.58 1.11 1.10 1.10 72.36
1000 0.99 1.00 0.77 1.02 1.01 1.01 89.53

Notes. Metropolis-Hastings acceptance rate (M-H acc.), probability of highest probability model (pH),
proportion of Monte Carlo replications with a M-H rate larger than 0.8, inefficiency factors for the off-
diagonal elements of the correlation matrix R, for the leading elements of the factor loading matrix αlead

and for the idiosyncratic variances Σ. The inefficiency factors are computed as the averages of the median of
the corresponding values over the Monte Carlo replications corresponding to the highest probability model.
Average computational time in minutes, for a total of 40,000 MCMC iterations for each experiment. Monte
Carlo averages over replications with a M-H rate larger than 0.8.

thus striking, especially given the fact that although BEFA is run without knowing the true

number of factors a priori, contrary to classical EFA, it still manages to perform better in

recovering the true latent structure.

Finally, Table 5 shows the results obtained by applying to the same simulated data

methods routinely used in psychometrics and econometrics to select the number of compo-

nents/factors.36 While, as seen in Table 3, the BEFA algorithm displays remarkably high

hit rates, the different classical criteria are not able to recover the dimensionality of the true

latent structure in a consistent way. In particular, while most of the methods succeed in

36A brief description of the various classical methods used in this section for selecting the number of
components/factors and for performing rotation is provided in the Web Appendix. The scree plots displaying
the average eigenvalues across the 100 Monte Carlo replications for each model are also shown there.
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recovering it for the simplest models with three factors, their performance varies between

under- (in the case of the Velicer and of the Onatski method, and of the Bayesian Information

Criterion) and over-extraction (in the case of the Kaiser criterion) for the higher-dimensional

models. In general, doubling the number of observations from 500 to 1,000 allows a more

accurate selection of the number of factors, while including in the data extra measurements

uncorrelated with the others (as in the last four models) leads to an even greater degree of

over-extraction.

We now apply our methodology to real data for the estimation of a high-dimensional

factor model.

4.2 Empirical Analysis of the BCS Data

This section of the paper applies our method to data on cognitive, psychological and health

measurements. Classical Exploratory Factor Analysis is widely used to boil down high

dimensional data on psychological traits to interpretable scales. This is the method used

to obtain the Big Five37 (see Goldberg, 1990). We estimate the structure of cognitive,

psychological and physical traits in childhood using the BEFA approach. We then show

which alternative structures are obtained by the methods traditionally used.

Data. We apply our method to data from the British Cohort Study (BCS), which has been

widely used in an interdisciplinary literature on the effects of early life conditions on adult

outcomes. The BCS is a longitudinal survey following all babies born in a particular week of

April 1970 in the United Kingdom. A wealth of information has been collected at multiple

ages on the cohort members’ cognitive, behavioral and physical development, their family

and school environment, and their labor market and life outcomes. For this application,

we use information on family background characteristics from the birth sweep, and on 131

cognitive, behavioral and health measurements—28 binary and 103 continuous—at age 10,

to estimate the structure of childhood traits for the male cohort members.38

Prior Specification and MCMC Tuning. We run our algorithm on this data set and

assume that the number of underlying factors does not exceed 20, (so K = 20).39 We adopt

a prior specification that is similar to the one used in the Monte Carlo study, assuming

a0m = 0 and A0 = 3, and for the continuous measurements c0 = 2.5 and C0
m specified as in

37In psychology, the Big Five personality traits are five broad domains or dimensions that are used to
describe human personality, and that are based on the Five Factor Model (FFM)(Costa and McCrae, 1992).
The Big Five are Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism (OCEAN).

38Full details on the data and the measures we use are in Appendix B.
39Since we find 13 factors, there is no need to rerun with a larger maximum number of factors.
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equation (17). The only differences worth pointing out are for the regression coefficients, the

correlation matrix of the factors, and the indicator probabilities. We introduce covariates in

our factor model to control for observed heterogeneity, and assume that the corresponding

regression coefficients are a priori centered (b0m = 0) with prior variance B0
m = 3I.40 To

hinder factor splitting, which happens to be a problem in our application when assuming

a uniform prior on the individual factor correlations, we increase the number of degrees of

freedom to ν = K+5. As shown in Figure 1, this value of ν shifts the prior distribution of the

maximum correlation away from 1. The scale matrix S is specified as stochastic to implement

the Huang and Wand (2013) prior, and its diagonal elements are allowed to take relatively

large values to enhance mixing by fixing Ak = 100. Finally, the prior on the indicator weights

is specified with measurement-specific parameters τ0m assumed to have a symmetric prior

Beta distribution (κ0 = ξ0 = 0.1), and for the included measurements the Dirichlet prior

is specified with concentration parameter κ = 0.5, a prior similar to the one used for the

largest model with 125 measurements in our Monte Carlo study (see Table 2). We start the

algorithm with a single factor and run the sampler for 100, 000 iterations, where only the

last 40, 000 ones are used for posterior inference.41 For the factor selection, 2S intermediate

steps are performed at each MCMC iteration, with S = 1 + φ and φ ∼ Poisson (4). We

run the MCMC sampler several times with different starting values to check it converges

to the same solution. After sampling, the MCMC draws are post-processed following the

strategy described in Subsection 3.4 to solve the sign and column switching problems and

make interpretation possible.

Empirical Results. The main results are presented in Figure 2, which displays the pos-

terior means of the factor loadings in the highest probability model (HPM)—the model that

corresponds to the indicator matrix ∆ that is visited most often by the algorithm. In our ap-

plication, the posterior probability of the HPM is 0.42. These results show that the method

succeeds in condensing the information contained in the data in a concise and interpretable

way. BEFA uncovers 13 factors (out of an admissible set of K = 20) from the 131 measure-

ments recorded from multiple sources on the development of the child at age 10. The factor

loading matrix should be interpreted jointly with Figure 3 that shows the posterior corre-

lations among the estimated factors and gives more insights into the interrelations between

the latent constructs.

40See Appendix B for scaling of the covariates.
41We resort to a long burn-in period for the empirical application, as the pre-MCMC stage based on

the unrestricted algorithm turned out to produce too many nonidentified factors that could not be used to
generate a sensible starting value for ∆.
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Figure 2: BEFA, Posterior Factor Loading Matrix in the BCS.
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Notes. The 131 measurements (tick marks on the vertical axis) are in the order specified in
Appendix B. [M] refers to traits extracted from items evaluated by the mother, [T] by the teacher,
[C] by the child. Active factors only are displayed, out of a maximum of 20 potential factors.44



First of all, the measurements are clearly allocated to one of three broad categories—

cognitive, noncognitive and health. All intelligence test scores load on a single factor, which

we term cognitive ability (θ1);
42 likewise, all physical measurements load on a separate factor,

hence named Body Build (θ13). Most importantly, the numerous measures belonging to the

five noncognitive scales (the Rutter, Conners, Child Developmental, Self-Esteem and Locus

of Control scales) are allocated to 11 different factors in such a way that items describing the

same trait consistently load on the same factor. In this way, each factor beyond the first one

can be clearly named as a child mental health problem or facet of temperament, as shown

in the columns of Figure 2 (θ2–θ12). For example, the factor we call “Attention Problems

[T]” (θ5) is loaded by all teacher-reported items denoting inability to pay attention in class.

Second, measurements collected from different subjects (mothers, teachers, and the children

themselves) load on separate factors, although some of them use exactly the same wording.43

Third, Figure 3 shows that the estimated correlations among the factors are informative:44

in addition to the two main clusters of inter-correlated mother-(θ2–θ4) and teacher- (θ5–

θ11) reported traits, BEFA also succeeds in uncovering meaningful correlations across traits

derived from reports by different informants. For example, the correlation between cognitive

ability (θ1), as measured by intelligence test scores administered to the child, and attention

problems (θ5), as measured by teacher-reported items, is -0.504. And the low correlation

between mother- and teacher-reported traits is also consistent with a consolidated literature

in child psychology, starting from the seminal study of Achenbach et al. (1987), who report

that correlations of ratings are low between informants who play different roles with children.

42Items from the locus of control scale also load on this factor. While this might seem prima facie un-
usual, it is not actually uncommon in the literature. Costa and McCrae noticed “Many lexical studies show
that some aspects of rated or self-reported intelligence (e.g., logical, foresighted vs thoughtless, impercep-
tive) also load on a Conscientiousness factor; we view these as reflections of Competence. We would also
hypothesize that locus of control would be related to this facet.” (Costa et al., 1991). Additionally, also
Van Lieshout and Haselager (1994) and Mervielde et al. (1995) obtain childhood factors loading on both
intellectual capacity/intelligence and Conscientiousness. Finally, von Stumm et al. (2009), analysing these
same data, also notice a substantial overlap of locus of control and intelligence. They hypothesize this may be
partially due to the shared cognitive-based setting of assessment (i.e., in school under teacher’s supervision).
Alternatively, like Costa et al. (1991), they speculate that these scales may tap into the same dimension of
individual differences. Intelligence enables learning and understanding, which facilitate pupils’ school perfor-
mance and academic achievement. This encourages a sense of personal competency and, thus, students are
likely to attribute school achievements to their own ability and effort rather than external circumstances. In
our results, all the locus of control items which load on factor 1 specifically refer to academic performance,
attesting that the measurement of locus of control in the BCS 1970 is closely linked to school experiences.

43This occurs in the case of the Child Developmental Scale, which was specifically developed for inclusion
in the BCS by selecting appropriate items from the Rutter and Conners instruments, and adding a few
additional ones—such as motor coordination problems—to make the scale a more comprehensive measure of
child development. The list of items with the same wording and the different factors they load on is shown
in the Web Appendix. The detailed description of each item by which each factor is loaded is also reported
there.

44Posterior standard errors for the estimated correlations are displayed in Table A3.4 in the Web Appendix.
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Figure 3: BEFA: Posterior Correlation Matrix of the Factors in the BCS Application.
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Comparison with Estimates from Classical Methods. We now compare the perfor-

mance of our procedure with that of approaches traditionally used in the applied literature.45

Given the lack of a commonly accepted method of aggregation, different studies summarize

the available information in many different ways, and often arrive at different conclusions,

even when analyzing the same data. First and foremost, all studies make a priori judgments

on which sets of scales to aggregate: no previous study has analyzed all the information

available in the data as we do here. At the initial stage, researchers usually define broad

categories—such as cognition, personality and health—then eventually define sub-categories

(e.g., verbal and mathematical intelligence, conduct or attention problems). This approach

may be appropriate when a priori information is available to the researcher. Then, analysts

use their method of choice to condense the information available within each of these pre-

defined categories. The two most commonly used approaches are: (1) construction of simple

45A brief description of the various classical methods used in this section for selecting the number of
components/factors and for performing rotation is provided in the Web Appendix.
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sums or averages; (2) Exploratory Factor Analysis (EFA), with the extraction of principal

components or factors.

A first common approach to aggregation is to take sums or unweighted averages, either

of different scales belonging to a broad category (e.g., all cognitive scales), or of different

items belonging to the same scale (e.g., all items belonging to the self-esteem scale), as

done in Murasko (2007), Gale et al. (2008) and Kaestner (2009), among others. This simple

procedure makes two strong assumptions: equal weighting of items (i.e., all measures are

assumed to incorporate the same share of information about the latent factors), and absence

of measurement error. Both of these assumptions are at odds with the data.46 On the

one hand, different measurements associated with the same factor clearly have different

factor loadings (Figure 2). On the other hand, we find substantial measurement error in

the measurements (Figure 4). This provides evidence that, at least when using the BCS

data, unweighted aggregates are not an adequate representation of the latent structure of

childhood traits.

Another approach commonly adopted is to extract principal components or factors. Al-

though the two methods are conceptually different, they are often used interchangeably in

the applied literature, when there is need for dimensionality reduction. For example, Fein-

stein (2000), Blanden et al. (2007), Gale et al. (2009), Jones et al. (2011) and Dohmen et al.

(2012) all extract principal components, while von Stumm et al. (2009), Baron and Cobb-

Clark (2010), Antecol and Cobb-Clark (2010), Helmers and Patnam (2011) and Fiorini and

Keane (2012) extract factors, although they deal with similar applications and sometimes

even use the same data.

When components are extracted, error in the measurements is not accounted for. When

extracting factors, instead, the analyst only analyzes the variability in the observed measure-

ments which can be explained by the common factors not affected by measurement error.

Stated differently, components extraction is based on an eigenvalue decomposition of the

raw correlation matrix (Jolliffe, 1986), while factor extraction is applied on the “reduced”

correlation matrix with measurement error variance removed (the one based on the factor

covariance).47

It is instructive to compare the steps involved across the various methods. While BEFA

is a unified single step procedure, traditional approaches involve multiple stages: a first

step in which the number of components/factors is selected, a second step in which compo-

nents/factors are extracted (conditional on the number selected in the first step), and a third

46See Cunha and Heckman (2008) for an exploration of these issues.
47In practice, the two methods will yield similar results when the values of the communalities are relatively

high (Fabrigar et al., 1999).
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Figure 4: BEFA, Proportion of total variance of measurements due to noise.
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Notes. Segments on top of bars represent the corresponding 95% highest posterior density intervals. Mea-
surements are ordered as follows, from top to bottom: Cognitive items (PLCT, FMT, SERT, BASTM, BAS-
TRD, BASTS, BASTWD), Rutter1 to Rutter 19, Conners1 to Conners19, Child development scale (CDEV1
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Head, Weight, Bpsys, Bpdias). See Appendix B for details.
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step in which rotation is performed to search for a simple structure.48 Arbitrary decision

rules are involved at each step. Several criteria are available to select the dimensionality

of the latent structure, to extract the factors (Gorsuch, 1983), and to rotate the resulting

loading matrices (Jennrich, 2001, 2002). If a simple structure does not emerge in a first

round, classical Exploratory Factor Analysis procedures also involve further steps, in which

measurements weakly loading on factors are iteratively eliminated on the basis of arbitrary

threshold rules, until a stable solution with only single loaders is achieved. The elimination

criterion is also usually based on the magnitude of the loadings, without accounting for their

statistical significance.

BEFA performs all of these steps in one coherent Bayesian procedure, where the dimen-

sion of the latent structure is estimated jointly with the allocation of the measurements to

the factors. This is in contrast with traditional approaches in which the various steps are

performed sequentially, and each of them requires ad hoc judgments, which affect the final

outcome, as shown in Table 7.49

First, as already seen in the previous section with the application to the simulated data,

the choice of the method used to select the dimensionality of the latent structure is not

innocuous. Table 6 shows that the number of components/factors estimated from the raw

measurements ranges from a minimum of 6 when using the Scree plot and the Onatski

(2009) method, to a maximum of 72 when applying the Akaike Information Criterion.50 It

also shows that each method selects a number of components bigger than the number of

factors. Because component extraction does not discriminate between common and unique

variance, spurious components/factors are likely to be extracted. Additionally, using raw

or residualized measurements51 also makes a difference, since in the latter case a smaller

number of components/factors is usually selected. This might suggest that, when using raw

measurements, spurious components are likely to be extracted.

48The procedure of rotation identifies blocks of measures that within blocks are strongly correlated
with one component/factor (i.e., satisfy convergent validity) but are weakly correlated with other com-
ponents/factors across blocks (i.e., satisfy discriminant validity).

49Discarding measurements is an intuitively unsatisfactory procedure but it is an essential part of Ex-
ploratory Factor Analysis. (See, e.g., Gorsuch, 2003). At the same time, the procedure used in this paper
can be faulted by assuming that each measurement loads on at most one factor. In future work, we plan to
relax this requirement.

50Scree plots of the eigenvalues from both the raw and the reduced polyserial correlation matrix are shown
in the Web Appendix. It is evident that, in both cases, no clear separation or “elbow” emerges.

51We define residualized measurements as the residuals of a linear regression of the measurements on the
seven covariates (X) which are included in the BEFA measurement system. We use a linear probability
model for the binary measurements. The covariates included are mother’s age at birth, mother’s education
at birth, father’s high social class at birth, total gross family income at age 10, an indicator for broken
family, the number of previous livebirths, and the number of children in the family at age 10. More details
are provided in Appendix B.2.
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Table 6: Classical Methods to Select the Number of Components/Factors

Method Number of components Number of factors

Raw Residualized Raw Residualized
Measurements Measurements Measurements Measurements

Cattell’s Scree Plot 6 4 6 4
Onatski n/a n/a 6 5
Velicer’s Rule 12 11 n/a n/a
Optimal Coordinates 15 11 13 11
Kaiser’s Rule 28 29 25 25
Akaike IC n/a n/a 72 47
Bayesian IC n/a n/a 21 18

Notes. IC = Information Criterion. We use the eigenvalues of the raw correlation matrix to find the
number of components (when applying the Scree, Velicer, Optimal Coordinates and Kaiser methods), and
the eigenvalues of the reduced correlation matrix to find the number of factors (when applying the Scree,
Optimal Coordinates and Kaiser methods). To construct the reduced correlation matrix, we use the squared
multiple correlations as estimates of the communalities. The Akaike and Bayesian Information Criteria
are computed after having performed maximum likelihood factor analysis. For the Onatski method, we
specify k0 = 3 and k1 = 10. We define residualized measurements as the residuals of a linear regression
of the measurements on the covariates (X) which are included in the BEFA measurement system (see
Appendix B.2). We use a linear probability model for the binary measurements.

Second, in the classical approach, not only the criterion to detect the number of compo-

nents/factors plays a role, but also the extraction and rotation methods have a non-negligible

influence on the final structure. This is clearly visible in Table 7. Here we show the final

number of components/factors and measurements which result by applying to the initial

set of 131 measurements (both raw and residualized) different dimensionality selection cri-

teria, extraction and rotation methods, and use the same set of rules to discard items, as

suggested in Costello and Osborne (2005), and applied in Heckman et al. (2013).52 The

extraction methods applied are those of principal components (routinely used to construct

ability measures),53 principal factors (Gorsuch, 1983, 2003), applied among others in Antecol

and Cobb-Clark (2010) and von Stumm et al. (2009), and maximum likelihood factor anal-

ysis (the method closer to BEFA). We then use two commonly applied methods of oblique

rotation—promax and quartimin—that penalize departures from Thurstone’s simple struc-

ture, and allow for correlated factors which are also accommodated in BEFA. Hence, for each

set of measurements (raw or residualized), initial number of components/factors, extraction

and rotation method, we apply the following rules. First, we exclude items with loadings

52Similar threshold rules to discard weakly-loading items and to interpret the resulting structure are
applied by von Stumm et al. (2009) and Fiorini and Keane (2012).

53We use the component loadings, i.e., the eigenvectors scaled by the square root of the eigenvalues.
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smaller than 0.5 in absolute value (to avoid the weak-loading problem), and also items with

a loading of 0.32 or higher in absolute value (as suggested in Tabachnick and Fidell, 2001)

on two or more factors (to avoid the crossloading problem). Second, we also exclude mea-

surements in cases where only two of them load on a single factor (to avoid weakly-identified

constructs). This restriction serves the same purpose as our identifiability condition (that

at least three measurements must be dedicated to each factor). In the classical setup this

condition is applied ex-post and in a sequence of steps subject to arbitrary choices, while in

BEFA it is explicitly incorporated into the MCMC sampling scheme. This iterative proce-

dure of components/factors selection, extraction, rotation, and elimination of measurements

is repeated until no further items are dropped.

It is clear from Table 7 that both the choice of the initial number of components/factors

to extract and the extraction/rotation method adopted have a substantial impact on the final

structure achieved, when performing this iterative sequential elimination procedure.54 The

final structure achieved depends on both the chosen initial number of components/factors,

and on the choices made at the various steps. It ranges between a minimum of 4 final factors

and 34 measurements, to a maximum of 11 final factors and 76 measurements. Starting

by selecting a smaller number of factors in general leads to retaining a smaller number of

measurements. The choice itself among the different final configurations is not innocuous.

While more parsimonious, a lower-dimensional structure would not display the richness of

the childhood traits as uncovered by the BEFA approach. In almost all final configurations

obtained with this procedure, the health factor has been discarded (with the exception

of the structure obtained when extracting principal components with an initial number of

12); additionally, when using maximum likelihood factor analysis with 6 initial factors, the

cognitive factor is discarded.

In sum, alternative classical approaches to aggregating high-dimensional data often make

assumptions that are not supported by the data (equal weighting of items and absence

of measurement error), or that lead analysts to discard many measurements loading on

multiple factors. The multistage procedure of classical EFA is based on separate stage-wise

choices of significance levels, criteria for selection of the dimension of the model, criteria for

allocation of measurements to factors and criteria for estimating factor loadings made by the

analysts at various steps of the process. Although the BEFA method requires some a priori

judgments, it is a unified procedure that simultaneously chooses the dimension of the model,

the allocation of measurements to factors and factor loadings using the same algorithm and

tuning parameters.

54Browne (2001) was the first to show how different rotation criteria can influence factor pattern matrices.
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Table 7: Final Number of Components/Factors (KF ) and of Measurements (MF ) Obtained
by Applying Different Dimensionality Selection, Extraction and Rotation Methods and One
Sequential Item Elimination Algorithm to the Initial Set of 131 Measurements.

Method Raw Measurements

Selection Onatski (KS =6) Scree (KS =6)

Extraction Maximum Likelihood Principal Factors Principal Components

Rotation Promax Quartimin Promax Quartimin Promax Quartimin

KF 6 6 6 6 6 6
MF 46 46 41 40 56 56

Selection Optimal Coordinates (KS =13) Velicer (KS =12)

Extraction Maximum Likelihood Principal Factors Principal Components

Rotation Promax Quartimin Promax Quartimin Promax Quartimin

KF 10 10 10 10 11 11
MF 64 56 73 66 74 76

Method Residualized Measurements

Selection Onatski (KS =5) Scree (KS =4)

Extraction Maximum Likelihood Principal Factors Principal Components

Rotation Promax Quartimin Promax Quartimin Promax Quartimin

KF 5 5 4 5 4 4
MF 40 40 30 36 46 46

Selection Optimal Coordinates (KS =11) Velicer (KS =11)

Extraction Maximum Likelihood Principal Factors Principal Components

Rotation Promax Quartimin Promax Quartimin Promax Quartimin

KF 8 9 8 8 9 9
MF 54 54 59 57 64 65

Notes. KS is the number of components/factors selected at the beginning of the sequential item
elimination procedure, according to the various methods as shown in Table 6. KF is the final num-
ber of components/factors left at the end of the sequential item elimination procedure. MF is the
corresponding final number of measurements, out of an initial set of 131 measurements. For each set
of measurements (raw or residualized), initial number of components/factors, extraction and rotation
method, we apply the following rules. First, we exclude items with loadings smaller than 0.5 in absolute
value (to avoid the weak-loading problem), and also items with a loading of 0.32 or higher in absolute
value (as suggested in Tabachnick and Fidell, 2001) on two or more factors (to avoid the crossloading
problem). Second, we also exclude measurements in cases where only two of them load on a single fac-
tor (to avoid weakly-identified constructs). All the final resulting structures are shown in the Web Appendix.
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5 Conclusion

This paper develops and applies a new method—Bayesian Exploratory Factor Analysis

(BEFA)—to constructing maximum posterior probability indices that summarize high-dimen-

sional data by a low dimensional set of interpretable aggregates. We develop an integrated

Bayesian framework to factor selection that simultaneously tackles several steps in building

a factor model that are usually done sequentially: the choice of the dimension of the latent

structure, the allocation of the measurements to the factors, as well as the estimation of the

corresponding factor loadings.

Our method advances the traditional literature on Exploratory Factor Analysis. BEFA

constitutes a significant departure from traditional factor-analytic methods by overcoming

the intrinsic arbitrariness of the choices made by analysts in the various steps—from the

choice of dimension to the extraction and rotation method. Ours is a coherent estimation

framework. It is the first paper in the Bayesian literature to estimate a dedicated factor model

with correlated factors, where the dimension of the factor structure is a priori unknown.

Importantly, it links the two literatures, by invoking classical criteria to achieve identification,

and by imposing identifying restrictions as an integral feature of the estimation algorithm.

We make several contributions in implementing our algorithm. To explore the parameter

space, our sampler is allowed to navigate through expanded models where the identifying

restrictions are relaxed. However, these intermediate steps are not used for posterior in-

ference. They only serve as a computational tool. Eventually the algorithm only samples

identified models. To draw the factors and their correlation matrix, marginal data aug-

mentation methods as well as block sampling of the active and inactive factors have been

adapted to our problem, to make it possible to sample these parameters and latent variables

in a dimension-varying model.

We check the performance of our approach by a Monte Carlo experiment, and we show

that it outperforms classical methods both for dimensionality selection, and identification

of the true latent structure. Its applicability is demonstrated with an empirical study. We

estimate the structure of the childhood mental and physical traits, and show that the method

succeeds in producing interpretable aggregates. We compare its performance with that of

several existing classical Exploratory Factor Analysis approaches. We show that application

of classical Exploratory Factor Analysis can lead to different conclusions, depending on

the choices made by the analysts at various steps of the process and the sequential item

elimination rules used to achieve interpretability of the structure. Our method is a coherent,

theoretically-based alternative.
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Classical EFA discards data that load on multiple factors. Our version of BEFA does not

discard data, except for measurements that do not load on any factor. However, the analysis

of this paper assigns measurements to at most one factor. In research underway, we extend

our approach to allow measurements to be allocated to multiple factors. This changes the

identification and computation algorithm substantially and warrants a separate analysis.
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A Details on MCMC Sampling

A.1 Proof of the Detailed Balance Condition for the MH Sampler

with Intermediate Steps

To prove that the Markov chain resulting from the sampling scheme introduced in Sec-

tion 3.1.2 leaves the distribution of ϑ invariant, it is enough to show that the detailed

balance condition holds for accepted moves. The probability of starting from a set of pa-

rameters ϑ̂0 belonging to the identified set (i.e., ∆̂0 ∈ D), going through the sequence of

intermediate states ϑ̂1, . . . , ϑ̂S−1,ϑS, qϑS−1, . . . , qϑ0, and finally accepting the final state qϑ0

(i.e., if q∆0 ∈ D), can be shown to be the same as the probability of starting from the same

state qϑ0 (assuming it belongs to the identified set), moving to ϑ̂0 through the same sequence

of transitions, but in reverse order, and accepting ϑ̂0 as the new identified state:

p(ϑ̂0)Tu(ϑ̂0, ϑ̂1) . . . Tu(ϑ̂S−1,ϑS)Tu(ϑS, qϑS−1) . . . Tu( qϑ1, qϑ0) δD( q∆0) (A1)

= p(ϑ̂0)
S∏
s=1

Tu(ϑ̂s−1, ϑ̂s)
S∏
s=1

Tu( qϑs, qϑs−1) δD( q∆0),

= δD(∆̂0)pu(ϑ̂0)
S∏
s=1

pu(ϑ̂s)

pu(ϑ̂s−1)
Tu(ϑ̂s, ϑ̂s−1)

S∏
s=1

pu( qϑs−1)

pu( qϑs)
Tu( qϑs−1, qϑs) δD( q∆0), (A2)

= δD(∆̂0)
S∏
s=1

Tu(ϑ̂s, ϑ̂s−1)
S∏
s=1

Tu( qϑs−1, qϑs) pu( qϑ0)δD( q∆0),

= p( qϑ0)Tu( qϑ0, qϑ1) . . . Tu( qϑS−1,ϑS)Tu(ϑS, ϑ̂S−1) . . . Tu(ϑ̂1, ϑ̂0) δD(∆̂0), (A3)

where equation (A2) follows from the mutual reversibility condition of equation (23). Fur-

thermore, both equation (A2) and equation (A3) use the fact that p(ϑ) ∝ pu(ϑ) δD(∆), see

equation (24).

The detailed balance condition of the unrestricted MCMC move through the intermediate

steps follows by integrating out the intermediate states ϑ̂1, . . . , ϑ̂S−1,ϑS, qϑS−1, . . . , qϑ1 on

both sides of equation (A1), to provide the kernel of the transition from ϑ̂0 to qϑ0:

Tu(ϑ̂0, qϑ0) =

∫∫
. . .

∫
Tu(ϑ̂0, ϑ̂1) . . . Tu(ϑ̂S−1,ϑS)

× Tu(ϑS, qϑS−1) . . . Tu( qϑ1, qϑ0) dϑ̂1 . . . dϑS . . . dqϑ1.
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A.2 Posterior Distributions

A.2.1 Indicator Matrix

The indicator matrix ∆ can be sampled row-wise using Gibbs updates. The posterior prob-

ability that the mth measurement is dedicated to the kth factor (or not dedicated to any

factor if k = 0) is a function of the marginal likelihood of its corresponding latent utility, for

k = 0, 1, . . . , K:

Pr
(
∆m = ek | Y ?·m,∆−m,X,θ, βm, τ

)
=

p(Y ?·m | ∆m = ek,X,θ, βm) p(∆m = ek |∆−m, τ)∑K
l=0 p(Y

?·m | ∆m = el,X,θ, βm) p(∆m = el |∆−m, τ)
, (A4)

where p(Y ?·m | ∆m = ek,X,θ, βm) denotes the marginal likelihood of the vector Y ?·m =

(Y ?
1m, . . . , Y

?
Nm)′, conditioning on the remaining rows ∆−m of the indicator matrix.

From a computational point of view, these posterior probabilities can be calculated using

the posterior log odds, which are more stable numerically than computing equation (A4)

directly:

Pr
(
∆m = ek | Y ?·m,∆−m,X,θ, βm, τ

)
=

[
K∑
l=0

exp
(
Om,(k→l)

)]−1
,

where Om,(k→l) denotes the posterior log odds for a move from a model where measurement

m is dedicated to factor k to a model where it is dedicated to factor l. More details on the

posterior log odds are presented in Appendix A.3.

A.2.2 Idiosyncratic Variances and Factor Loadings

The idiosyncratic variances Σ corresponding to the continuous variables,55 and the factor

loadingsα are sampled simultaneously for each measurementm. Let α∆m denote the only non-

zero element in row m of the factor loading matrix, where the corresponding measurement

m implicitly loads on factor k.

In the case of a continuous measurement that does not load on any factor (“null model”

where ∆m = e0), the idiosyncratic variance is sampled as follows:

σ2
m | . . . ∼ G−1

(
cN ; CNn

m

)
,

cN = c0 +
N

2
, CNn

m = C0
m +

Ỹ ′·mỸ·m
2

,

55Recall that for the binary measurements, we set σ2
m = 1.
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where Ỹ·m = Y ?·m −Xβm.

In the general case of a dedicated measurement, the posterior distributions of the id-

iosyncratic variance and of the non-zero factor loading are:

σ2
m | . . . ∼ G−1

(
cN ; CN

m

)
, α∆m | σ2

m, . . . ∼ N
(
ANma

N
m; ANmσ

2
m

)
, (A5)

where, under the fixed-scale normal prior:

cN = c0 +
N

2
, CN

m = C0
m +

1

2

(
Ỹ ′·mỸ·m +

(a0m)2

A0
m

− ANm(aNm)2
)
,

(ANm)−1 = (A0
m)−1 +

N∑
i=1

θ2ik, aNm =
a0m
A0
m

+
N∑
i=1

θikỸim.

In the binary measurement case, non-zero factor loadings are sampled from equation (A5),

where σ2
m = 1. No parameters need to be sampled in the “null model” case for binary

measurements.

A.2.3 Regression Coefficients

The regression coefficients β are sampled row-wise from the following conditional distribu-

tion, for m = 1, . . . ,M :

βm ∼ N
(
BN
mb

N
m; BN

m

)
,

(BN
m)−1 = (B0

m)−1 +
1

σ2
m

X ′X, bNm = (B0
m)−1b0m +

1

σ2
m

X ′(Y ?·m − θαm),

where αm is the column vector representing the mth row of α.

A.2.4 Latent Variables for the Binary Measurements

If measurement m is dichotomous, its corresponding latent variable Y ?
im is sampled from the

following truncated normal distribution, for each individual i = 1, . . . , N :

Y ?
im ∼

T N(−∞;0] (X
′
iβm + θ′iαm; 1) if Yim = 0,

T N(0;∞) (X ′iβm + θ′iαm; 1) if Yim = 1.
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A.2.5 Indicator Probabilities

The indicator probabilities τ are sampled by first drawing the components τ0 and τ ?:

τ0 ∼ Beta(κ0 + n0(∆); ξ0 +M − n0(∆)) , E(τ0) =
κ0 + n0(∆)

κ0 + ξ0 +M
, (A6)

τ ? ∼ Dir(κ1 + n1(∆), . . . , κK + nK(∆)) ,

where nk(∆) =
∑M

m=1 1[∆m = ek] is the number of measurements dedicated to factor k (or

not dedicated at all if k = 0). Then, compute the resulting probabilities τ using equa-

tion (14). In the case of the alternative hierarchical prior described in Subsection 2.3.1, each

τ0m is sampled from Beta(κ0 + 1[∆m = e0] ; ξ0 +M − 1[∆m = e0]). However, since only one

observation is available for the update, it is recommended to integrate the τ parameters to

obtain faster convergence and better mixing of the sampler (see Appendix A.3.2).

A.3 Posterior Log Odds

A.3.1 Deriving the Log Odds Conditional on the Indicator Probabilities τ

The posterior log odds that a measurement m currently dedicated to factor k becomes

dedicated to factor k′ (“null model” if k or k′ = 0) can be expressed as:

Om,(k→k′) = log
Pr
(
∆m = ek′ | Y ?·m,∆−m,X,θ, βm, τ

)
Pr
(
∆m = ek | Y ?·m,∆−m,X,θ, βm, τ

) ,
= log

p(Y ?·m | ∆m = ek′ ,X,θ, βm)

p(Y ?·m | ∆m = ek,X,θ, βm)
+ log

p(∆m = ek′ ,∆−m | τ)

p(∆m = ek,∆−m | τ)
, (A7)

= −Om,(k′→k),

where the last term is equal to log(τk′/τk) when sampling is done conditional on the param-

eters τ (see Appendix A.3.2 for the case where τ is integrated out).

The marginal likelihoods of the latent variables of the measurements are required to

compute the posterior log odds. These marginal likelihoods differ for continuous and binary

measurements, and for the case of the “null model” and the general case of a dedicated

measurement. In the continuous case, they can be expressed as, using the posterior moments
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derived in A.2.2:

p(Y ?·m | ∆m,X,θ, βm) =


(2π)−

N
2
Γ (cN) (C0

m)c0

Γ (c0) (CNn
m )cN

in the “null model,”

(2π)−
N
2
|ANm|1/2

|A0
m|1/2

Γ (cN) (C0
m)c0

Γ (c0) (CN
m )cNm

in the dedicated case.

while in the binary case:

p(Y ?·m | ∆m,X,θ, βm) =


(2π)−

N
2 exp

{
−1

2
Ỹ ′·mỸ·m

}
in the “null model,” otherwise

(2π)−
N
2
|ANm|1/2

|A0
m|1/2

exp

{
−1

2

(
Ỹ ′·mỸ·m +

(a0m)2

A0
m

− ANm(aNm)2
)}

.

With these marginal likelihoods in hand, it is straightforward to compute the posterior

log odds. In the continuous measurement case, they are equal to:56

Om,(0→k) = −1

2
log (Pmk)− cN log

(
1− Qmk

CNn
m

)
+ log

τk
τ0
,

Om,(k→k′) = −1

2
log

(
Pmk′

Pmk

)
− cN log

(
CNn
m −Qmk′

CNn
m −Qmk

)
+ log

τk′

τk
,

and in the binary case:

Om,(0→k) = −1

2
log (Pmk) +Qmk + log

τk
τ0
,

Om,(k→k′) = −1

2
log

(
Pmk′

Pmk

)
+Qmk′ −Qmk + log

τk′

τk
,

for all k 6= 0 and k′ 6= 0, where:

Pmk = 1 + A0
m

N∑
i=1

θ2ik, Qmk =
1

2

(∑N
i=1 θikỸim

)2(
(A0

m)−1 +
∑N

i=1 θ
2
ik

) .
A.3.2 Integrating out the Indicator Probabilities τ

Integrating out the vector of indicator probabilities τ from the likelihood function does not

affect the ratio of the marginal likelihoods of Y ?·m in equation (A7), but only the last term

that is equal to log(τk′/τk) when sampling is done conditional on τ . For a move from a model

56For the computation of the posterior log odds, the factor loadings are assumed to be a priori centered
(i.e., a0m = 0) to simplify the calculations. This assumption is usually adopted in factor analysis.
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where measurement m is dedicated to factor k to a model where it is dedicated to factor k′,

this second term should be replaced by the ratio of the marginal likelihoods of ∆ in the two

models. This ratio is expressed as log(p(∆mk′)/p(∆mk)), where the two indicator matrices

∆mk and ∆mk′ are identical up to row m, where in the first case this row is the indicator

vector ek, while in the second it is ek′ .

The marginal distribution of the indicator matrix ∆ is equal to:

p(∆) =

∫∫
p(∆ | τ0, τ ?)p(τ0)p(τ ?)dτ0dτ ?,

=
B(κ0 + n0(∆), ξ0 +M − n0(∆))

B(κ0, ξ0)

Γ
(∑K

k=1 κk

)∏K
k=1 Γ (κk + nk(∆))

Γ
(
M − n0(∆) +

∑K
k=1 κk

)∏K
k=1 Γ (κk)

, (A8)

where nk(∆) =
∑M

m=1 1[∆m = ek], for k = 0, . . . , K. Given that the numbers of measure-

ments in the different groups are equal to:

nk(∆
mk′) = nk(∆

mk)− 1, nl(∆
mk′) = nl(∆

mk),

nk′(∆
mk′) = nk′(∆

mk) + 1,

for all k 6= k′ and l 6∈ {k, k′}, it follows from equation (A8) that the ratio of the marginal

likelihoods, for all k 6= k′, simplifies to:

p(∆mk′)

p(∆mk)
=


nk′(∆

mk) + κk′

nk(∆mk)− 1 + κk
for k 6= 0 and k′ 6= 0,

n0(∆
mk) + κ0

nk(∆mk)− 1 + κk

M − n0(∆
mk)− 1 +

∑K
l=1 κl

M − n0(∆mk)− 1 + ξ0
for k′ = 0.

In the case of the alternative hierarchical prior specification on τ , with individual τ0m

parameters but common τ ? for the measurements, the marginal distribution of the indicator

matrix ∆ is:

p(∆) =
(κ0)

n0(∆)(ξ0)
M−n0(∆)

(κ0 + ξ0)M

Γ
(∑K

k=1 κk

)∏K
k=1 Γ (κk + nk(∆))

Γ
(
M − n0(∆) +

∑K
k=1 κk

)∏K
k=1 Γ (κk)

,

60



and the ratio of marginal likelihoods, for a move from k to k′ in row m, for k 6= k′, simplifies

to:

p(∆mk′)

p(∆mk)
=


nk′(∆

mk) + κk′

nk(∆mk)− 1 + κk
for k 6= 0 and k′ 6= 0,

κ0
ξ0

M − n0(∆
mk)− 1 +

∑K
l=1 κl

nk(∆mk)− 1 + κk
for k′ = 0.

(A9)

B Data: The British Cohort Study

We use data from the British Cohort Study (BCS), a survey of all babies born (alive or

dead) after the 24th week of gestation from 00.01 hours on Sunday, 5th April to 24.00 hours

on Saturday, April 11th, 1970 in England, Scotland, Wales and Northern Ireland. There have

been seven follow-ups on the members of the birth cohort: in 1975, 1980, 1986, 1996, 2000,

2004 and 2008. We draw information on background characteristics from the birth survey,

and on cognitive, mental and physical health measurements from the second sweep (age 10).

We exclude children born with congenital abnormalities, non-whites, and respondents with

missing information on the background characteristics. Individuals with missing observations

on some of the cognitive, mental and physical health measurements are discarded from the

sample, so we are left with a sample of 2,080 men.

B.1 The Measurement System

The measurement system includes one hundred and thirty one indicators of child cognitive,

mental and physical health traits, all collected at age ten. Notice we use both binary and

continuous measurements, which have been standardized to have zero mean and standard

deviation equal to one for use in our empirical application.

Cognitive Ability Scales. As indicators of cognitive ability, we use the following seven

tests:

• The Picture Language Comprehension Test [PLCT]: this is a new test specifically

developed for the BCS on the basis of the American Peabody Picture Vocabulary Test

and the English Picture Vocabulary Test; it covers vocabulary, sequence and sentence

comprehension.

• The Friendly Math Test [FMT]: this is a new test specifically designed for the BCS; it

covers arithmetic, fractions, algebra, geometry and statistics.
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• The Shortened Edinburgh Reading Test [SERT]: this is a shortened version of the

Edinburgh Reading Test, which is a test of word recognition particularly designed to

capture poor readers; it covers vocabulary, syntax, sequencing, comprehension, and

retention.

• The four British Ability Scales [BAS]: these measure a construct similar to IQ, and

include two non-verbal scales (Matrices [BASTM] and Recall Digits [BASTRD])

and two verbal scales (Similarities [WS] and Word Definition [BASTWD]).

Mental Health Scales. As indicators of psychological and behavioral problems, we use

the items from the following five tests:

1. The Rutter Parental ‘A’ Scale of Behavioral Disorder (Rutter et al., 1970): it was

administered to the mother, and designed to capture the presence of problem behaviors.

It contains 19 items which are descriptions of behavior, and the mother was asked to

indicate whether each description ‘does not apply’, ‘applies somewhat’ or ‘definitely

applies’ to the child, on a scale from 0 to 100. A visual analogue scale was used: the

mother had to draw a vertical line through the printed horizontal line to show how

much a behavior applied (or not) to the child.

2. The Conners Hyperactivity Scale (Conners, 1969): it was also administered to the

mother, and developed to assess attention deficit/hyperactivity disorder and evaluate

problem behavior in children and adolescents. It includes 19 items, and the mother

was asked to indicate whether each description applied to the child on a scale from 0

to 100, using a visual analogue like for the Rutter Scale.

3. The Child Developmental Scale: it was administered to a teacher with knowledge

of the child, to assess the child neurodevelopmental behavior against the ‘average’

behavior of most children of a similar age. It includes 53 items, and the teachers

were asked to indicate their level of agreement with each statement by bisecting a line,

which was coded into a 47-point scale ranging from “Not at all” to “A great deal”. The

items for this scale were taken mainly from the Conners Teachers Hyperactivity Rating

Scale (Conners, 1969) and the Rutter Teacher Behavioral Scale ‘B’ (Rutter, 1967), and

questions from the Swansea Assessment Battery (with permission of Professor Maurice

Chazan; see Butler et al., 1997).

4. The Self-Esteem (Lawseq) Scale: it was administered by the teacher and completed

by the child to measure his self-esteem with reference to teachers, peers and parents.

It includes 12 items (The total number of questions included is 16, but four of them
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are distractors) and was created by former Chief Educational Psychologist of Somerset

LEA (Local Education Authority) Lawrence (Lawrence, 1973, 1978). The child was

asked to answer ‘yes’, ‘no’ or ‘don’t know’, where the answer ‘no’ represents a higher

level of self-esteem (only one question is reverse-scored, and we have recoded it ac-

cordingly). For use in our empirical application, we have recoded all the answers into

binary measurements, by giving a value of 1 to all the ‘no’ answers, and a value of 0

to all the ‘yes’ and ‘don’t know’ answers.

5. The Locus of Control (Caraloc) Scale: it was administered by the teacher and com-

pleted by the child to measure his perceived achievement control. It includes 16 items

(the total number of questions included is 20, but four of them are distractors) and

was constructed from several well known tests of locus of control (Gammage, 1975).

The child was asked to answer ‘yes’, ‘no’ or ‘don’t know’, where the answer ‘no’ rep-

resents a more internal locus of control (only one question is reverse-scored, and we

have recoded it accordingly), which is desirable and also referred to as “self-agency”,

“personal control”, “self-determination”, etc. For use in our empirical application, we

have recoded all the answers into binary measurements, by giving a value of 1 to all

the ‘no’ answers, and a value of 0 to all the ‘yes’ and ‘don’t know’ answers (a similar

scoring scheme has been used in Ternouth et al., 2009).

Physical Health. As indicators of physical health, we use the following five measures,

all recorded during medical examinations: height, head circumference, weight, systolic and

diastolic blood pressure.57

B.2 Control Variables

The following seven control variables — denoted X in our model — are included in the

measurement system. The variables have been standardized to have zero mean and standard

deviation equal to one. i) mother’s age at birth, ii) mother’s education at birth (a dummy

variable for whether the mother continued education beyond the minimum school-leaving

57While the availability of information on height and weight is not a unique feature of our data, differently
from our case most of the measures recorded in public-use data are self-reported: as such, they are subject
to substantial measurement error, which is usually not dealt with by researchers with the use of suitable
methods such as factor-analytic techniques as we instead do here.
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age58), iii) father’s high social class at birth,59 iv) total gross family income at age 10,60

v) an indicator for broken family (a dummy variable for whether the child lived with both

parents since birth until age 10), vi) the number of previous livebirths, and vii) the number

of children in the family at age 10.

58The compulsory minimum school leaving age was increased from fourteen to fifteen in 1947, following
the 1944 Education Act.

59The BCS uses the Registrar General’s classification for measuring social class (SC). High Social Class
comprises SCI, SCII and SCIIINM (Non-Manual). Social class I includes professionals, such as lawyers,
architects and doctors; Social Class II includes intermediate workers, such as shopkeepers, farmers and
teachers; Social Class III Non Manual includes skilled non-manual workers, such as shop assistants and
clerical workers in offices.

60This is a categorical indicator taking the following values: 1=under £35 pw; 2=£35-49 pw; 3=£50-99
pw; 4=£100-149 pw; 5=£150-199 pw; 6=£200-249 pw; 7=£250 or more per week.
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Frühwirth-Schnatter, S. (2006): Finite Mixture and Markov Switching Models,

Springer.
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