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Abstract

Child birth leads to a break in a woman’s employment history and is considered
one reason for the relatively poor labor market outcomes observed for women com-
pared to men. However, the time spent at home after child birth varies significantly
across mothers and is likely driven by observed and, more importantly, unobserved
factors that also affect labor market outcomes directly. In this paper we propose
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and suggestions. We gratefully acknowledge funding from the Austrian Science Fund (FWF): S10309-G16 and
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two alternative Bayesian treatment modeling and inferential frameworks for panel
outcomes to estimate dynamic earnings effects of a long maternity leave on moth-
ers’ earnings in the years following the return to the labor market. The frameworks
differ in their modeling of the endogeneity of the treatment and the panel struc-
ture of the earnings, with the first framework based on the modeling tradition of
the Roy switching regression model, and the second based on the shared factor
approach. We show how stochastic variable selection can be implemented within
both frameworks and can be used, for example, to test for the heterogeneity of the
treatment effects. Our analysis is based on a large sample of mothers from the
Austrian Social Security Register (ASSD) and exploits a recent change in the ma-
ternity leave policy to help identify the causal earnings effects. We find substantial
negative earnings effects from long leave over a 5 years period after mothers’ return
to the labor market, with the earnings gap between short and long leave mothers
steadily narrowing over time.

1 Introduction

A robust finding that has emerged from a vast literature is that mothers earn less than women
without children. According to empirical work a significant part of this motherhood wage
penalty, a key reason for the observed gender wage gap, can be explained by lower human
capital, in particular years out of the labor force and unobserved heterogeneity (Anderson,
Binder, and Krause, 2002; Budig and England, 2001; Waldfogel, 1998a,b; Lundberg and Rose,
2000). The lower human capital of mothers partly results from a break in the employment
history as women stay at home for some period of time after child birth to care for the newborn
(maternity leave). This break is likely to lead to a depreciation of general and firm-specific
skills during absences from the labor market and lost rents associated with good job matches.

However, the amount of time mothers spend at home before returning to the labor market
varies considerably, even among those covered by the same maternity leave policy. A mother’s
decision when to return to the labor market depends on a range of additional factors and
is likely driven by observed and more importantly unobserved factors that also affect labor
market outcomes directly. In this paper we investigate the effect of a long maternity leave on a
mother’s earnings after her return to the labor market. We introduce two Bayesian treatment
effects modeling frameworks for panel outcomes to estimate the causal earnings effects of the
endogenous leave treatment from a large sample of mothers created from a unique Austrian
registry data set.

The estimation of treatment effects has become a focus of many econometric papers, in
particular the identification and estimation of the effect of an endogenous treatment variable
on some outcome of interest. Several approaches have been popular to identify causal treatment
effects in such settings, in particular instrumental variable approaches, the LATE estimator
and joint modeling approaches (Lee, 2005; Heckman, Ichimura, and Todd, 1998; Heckman
and Navarro-Lozano, 2004). Bayesian inferential methods to treatment effect estimation are
commonly based on some flexible joint modeling approach, often in the spirit of Roy’s switching
regression model (Roy, 1951; Lee, 1978) and have addressed a range of issues such as panel
outcomes and heterogeneity in treatment across subjects (Koop and Poirier, 1997; Chib and
Hamilton, 2000; Munkin and Trivedi, 2003; Chib, 2007; Chib and Jacobi, 2007; Li and Tobias,
2011).



Building on this literature, we introduce two modeling frameworks within the Bayesian
paradigm to estimate the causal effect of an endogeneous binary treatment on panel outcomes.
Both models are formulated within the potential outcome framework following the standard
approach in the treatment literature. The first framework is formulated in the tradition of
Bayesian treatment effects models in terms of a joint modeling framework for the treatment
and the potential outcomes based on the Roy switching regression model (Roy, 1951; Lee,
1978) to capture the endogeneity of the treatment, and does not require the specification
of the unidentified joint distribution of the two potential outcome sequences. We discuss
two alternatives to model the dependence across the panel outcomes. The second framework
employs the more recent factor approach to model the endogeneity of the treatment as well
as the panel structure of the earnings following Carneiro, Hansen, and Heckman (2003). Both
frameworks contain flexible formulations of the potential outcomes to capture heterogeneous
treatment effects, allowing for different effects of the treatment across subjects and different
time dynamics in the two treatment groups.

As an additional innovative and useful feature of these frameworks we introduce Bayesian
variable selection in the context of treatment effects models, which has been implemented in
many Bayesian papers in the context of “non-treatment” models (for example George and
McCulloch (1993, 1997); Geweke (1996); Ley and Steel (2009); Frühwirth-Schnatter and Wag-
ner (2010)). This feature together with a suitable specification of the model will enable us to
determine which covariates should be included in the model and to test for the existence of
common and level-specific effects of the treatment as well as covariates.

In our analysis we also exploit a recent exogenous change in the parental leave policy in
Austria to help identify the causal labor earnings effects of the endogenously determined leave
time. In July 2000 Austria extended the benefit period from 18 months since the birth of
the child to 30 months. The period of job protection remained unchanged at 24 months. This
exogenous policy change lead to an exogenous variation in time mothers spent at home (Lalive,
Schlosser, Steinhauer, and Zweimüller, 2014). Previous analysis of mothers in the US and
Britain has indicated that having access to job protected maternity leave has a positive wage
effect for mothers by increasing the likelihood that the mother returns to the same employer
thus decreasing the loss of firm-specific skills and the maintaining of good job matches. It has
also been argued (Waldfogel, 1998a) that job-protected maternity leave may have a negative
wage effect by inducing women to take a longer leave than otherwise, leading to a loss in
job experience. A recent study of a change in the Austrian parental leave policy (Lalive and
Zweimüller, 2009), finds that the extension of the job and benefit period from 12 months to 24
months delays return to work and has negative short-term consequences for wages.

The data for our analysis comes from the Austrian Social Security Register (ASSD), an
administrative individual register data that collects information for old-age security benefits
(Zweimüller, Winter-Ebmer, Lalive, Kuhn, Wuellrich, Ruf, and Büchi, 2009). The data set has
several advantages. In addition to the global coverage, we have precise information whether
and how long a mother took maternity leave and whether she returned to the same employer.
A weakness of the data is the lack of information on hours worked which we have taken into
account in the modeling of the data, for example by allowing for flexible time dynamics and
dependence structure in the panel outcomes.

The remainder of the paper is organized as follows. In Section 2 we provide some back-
ground about the maternity policy change in Austria. Section 3 describes our modeling frame-
works and in Section 4 we discuss Bayesian inference including variable selection. Section
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5 contains our simulation study and Section 6 the empirical analysis. We finish with the
conclusions in Section 7.

2 Background: Parental Leave Policy Maternity Leave Austria

In Austria, the first mothers return to work 2 months after the birth of the child which is the
end of the standard mother protection period. The parental leave policy starts after the end
of this period. In Austria, the parental leave policy has two components: job protection and
the payment of parental leave benefits. Since July 1990, the job protection and leave benefits
periods were extended from previously 12 months since the birth of the child to 24 months.
The length of the benefits payment period has undergone several changes more recently. A
reduction to 18 months in July 1996 has been followed by an extension of the leave period to
up to 30 months, 6 months beyond the job protection period, in July 2000.

The extension of the benefits period by one year and beyond the job protection period in
July 2000 induced a substantial proportion of mothers to delay return to work. Panel (a) in
Figure 1 shows the empirical cdfs of the duration of leave after child birth by policy regime
based on a sample of mothers who gave birth in a 2 year window before and after the 2000
policy change. The graph is based on a sample of mothers taken from the Austrian Social
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Figure 1: Empirical cdf of the duration of leave after the child birth and average log earnings for
mothers with short and long leave by panel period

Security Register (ASSD) which contains the complete individual employment histories for
the universe of Austrian employees since 1972, including information on number of births and
maternity and parental leave spells. The mothers could not predict the policy change as it was
made public on August 7, 2001 with an effective date of January 1st 2002. Further, to ensure
equal treatment of mothers who were on leave August 7, 2001 and gave birth after July 1st,
2000 they could extend the job protected leave to 2 years and parental leave payments to 30
months. As we can see from panel (a), mothers start to return to work after the end of the
mother protection period, within each group the majority of mothers return in the months
leading up to the end of the benefit period under the relevant policy scheme. Under the old
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policy regime a large proportion of mothers return just before month 18, while under the new
policy regime most mothers return just before month 30.

We therefore consider two groups of mothers based on their leave, those with a maternity
leave up to 18 months (short leave) and those with a maternity leave beyond 18 month (long
leave). This paper focuses on the identification of the effect of a long versus a short maternity
leave, the binary treatment, on the subsequent earnings of mothers following their return to
the labor market. As discussed, there are several potential reasons to believe that mothers
with a longer maternity leave receive lower earnings at their return to the labor market such
as a higher loss of human capital and loss of good job matches. Panel (b) in Figure 1 shows
the average log yearly earnings for mothers in both leave groups for six consecutive panel
periods (years) following their return to the labor market. The graph suggests that mothers
with longer leave start out with substantially lower earnings in their first full year in the labor
market than mothers with a short leave, and continue to earn less in the 5 years after their
return before the gap closes.

However, we have to be careful with the interpretation of the differences in terms of earnings
effects as we do not account for the endogenous choice of the maternity leave state that may
affect the earnings across the two groups. While a mother’s choice of length of maternity
leave is heavily affected by the length of the benefit period under the policy regime in place,
their choice also depends on a range of unobserved factors related to later yearly earnings
such as availability and attitudes to child care and personal investment in child rearing after
their return to the labor market. The latter might have strong affects on hours worked after a
mother’s return and thus yearly earnings. Further, while the graph compares mothers across
the two treatment groups in the same panel period, the data points across the two treatment
groups also contain calender year effects.

3 Alternative Treatment Model Specifications for Panel Out-

comes

In this section we introduce two alternative Bayesian treatment modeling frameworks to isolate
the effect of long maternity leave on panel earnings. Both are phrased within the potential
outcome framework commonly used in the treatment literature, allowing for a heterogeneous
panel treatment effects on earnings, and specify joint regression type models for selection into
treatment and the panel outcomes. The differences in the modeling frameworks are with respect
to modeling second order moments such as variance and dependence needed to capture the key
features of the data. While the first framework is based on the switching regression approach
used previously, the second framework introduces a factor model approach to modeling of
treatment effect data.

In the following we first formally describe the data structure motivated by our application in
terms of useful notation, before introducing the mean structure for the selection into treatment
and the potential outcome sequences common across the two modeling frameworks. We then
specify switching regression and shared factor models as alternative approaches to capture the
dependence across the outcomes and the dependence between the treatment and discuss their
implications for the observed data models and treatment effects.
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3.1 Data Structure and Notation

Consider the following setting based on the empirical example with a sample of i = 1, ..., n
mothers that gave birth between July 1998 and June 2002. Following from the previous
discussion we define the exogenous binary policy variable zi, our instrumental variable, for
each mother as

zi =

{
0, if child born before July 2000,
1, if child born after June 2000.

As discussed before, mothers with zi = 0 receive maternity leave benefits up to 18 months,
while mothers with zi = 1 receive benefits up to 30 months. Job protection ends at 24 months
under both policy regimes.

We let the variable mi denote the number of months a mother spends on maternity leave
before returning to the labor market and define the endogeneous binary maternity leave treat-
ment variable xi for short (0) or long (1) leave as

xi =

{
0, if mi ≤18,
1, if mi >18.

Each mother has a vector vi of baseline characteristics at treatment, such as demographic
characteristics and earnings before maternity leave, that affect selection into the treatment in
addition to the policy regime in place at the time.

For each mother we further observe a vector of labor market outcomes yi = {yi1, yi2, ..., yiTi
},

here measured as log earnings. The time subscript refers to the period (year) since return to
the labor market where Ti denotes the number of consecutive panel periods (years) for which
we observe the mother i in the labor market after her return.

We also observe a matrix of demographic and job related variables that affect earnings,
Wi = {wi1,wi2, ...,wiTi

} with some elements varying over time. For the sake of a simpler
notation and clearer description of the model specifications and features we assume a balanced
panel with T yearly observations for each mother in following discussion.

For each mother we define the two potential outcome sequences of log earnings under the
two possible treatments as y0i and y1i, with y0i = {y0,i1, y0,i2, ..., y0,iT } referring to the vector
of potential earnings under short leave (xi = 0) and y1i = {y1,i1, y1,i2, ..., y1,iT } to potential
earnings vector under long leave (xi = 1). Depending on the realized treatment xi, we observe
only one of these potential outcome sequences, i.e.:

yi = y0i(1− xi) + y1ixi.

Due to this data restriction, the correlation between the potential outcomes and thus individual
level treatment effects (y1i − y0i|Wi) cannot be identified from the data without additional
identification assumptions that can never be verified by the data. Hence the treatment effect
literature focuses on the estimation of the average causal treatment effect (ATE)

ATE(W) = E[y1i|W]− E[y0i|W],

for a particular matrix W of demographic and job related variables. Further treatment effects
such as the average causal treatment effect on the treated and untreated can be identified
and estimated only under additional unverifiable assumptions on the joint distribution of the
potential outcome sequences.

6



3.2 Modeling the Mean Structures of the Endogenous Leave Treatment and

Potential Earnings Sequences

As noted above, the two modelling approaches differ only with respect to modelling second
order moments such as dependencies and variances structures. In both approaches, selection
into the endogenous treatment xi is specified as a standard probit model via a normal latent
variable as xi = I{x∗i > 0} with

x∗i = v′
iα1 + ziα2 + ηi , ηi ∼ N

(
0, σ2x

)
, (3.1)

where zi is the instrument based on the policy regime defined above. We will denote by µ(x∗i ) =
v′
iα1 + ziα2 the conditional expectation of x∗i given the covariates (vi, zi). Subsequently, we

will refer to x∗i as latent utility.
To capture the heterogeneous effect of long maternity leave on log earnings we specify the

basic observation models for the two potential outcome vectors y0i and y1i as

y0i = 1Tµ+Wiγ + ε0i, (3.2)

y1i = 1T (µ+ κ) +Wi(γ + θ) + ε1i, (3.3)

where y0i and y1i refers to the potential log earnings of a mother under a short leave and long
leave, respectively. This general formulation assumes that all covariate effects can vary with
the treatment. We have a common and heterogeneous effects of the treatment captured by the
coefficients κ and θ, respectively. This specification is also useful when we introduce variable
selection into the modeling framework to test for the presence of the common and heterogenous
treatment effects. To simplify notation, we will use µ(yji) to denote the conditional expectation
of yji for j = 0, 1 given the covariates Wi, i.e. µ(y0i) = 1Tµ+Wiγ and µ(y1i) = 1T (µ+κ)+
Wi(γ + θ).

3.3 Modeling the Dependence and Variance Structures

Further assumptions concerning the unobserved errors ηi in the selection equation (3.1) and the
composite errors εji in the two potential outcome equations (3.2) and (3.3) are necessary for
identification. First of all, we assume that the composite errors εji follow a normal distribution,
εji ∼ NT (0,Ωj), where the covariance matrices Ωj capture dependence between subsequent
outcomes under treatment j.

A key feature and modeling challenge is the dependence between the treatment and the
outcomes. Mothers choose the length of the maternity leave based on a range of considerations,
including their job market prospects and unobserved factors related to subsequent earnings,
implying that treatment is endogenous. This endogeneity can be captured by specifying a joint
distribution for the error terms in the treatment and potential outcome equations (ε0i, ε1i, ηi)
as 


ε0i
ε1i
ηi


 ∼ N2T+1


0,




Ω0 Ω01 ω0

Ω01 Ω1 ω1

ω′
0 ω′

1 σ2x




 .

As we never observe both sequences of potential outcomes for one individual, the covariance
matrix Ω01 of the potential outcome sequences cannot be identified directly from the observed
data. While it is possible to identify bounds on the covariance of the potential outcomes based
on the positive-definiteness restriction and the remaining components of the covariance matrix
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of the three error terms in the simple cross-section case as shown in Koop and Poirier (1997),
such an undertaking appears to be infeasible for our larger (unbalanced) panel data case.

We will consider two modelling approaches, which differ in the concrete specification of the
structure of the joint covariance matrix Cov(ε0i, ε1i, ηi). As shown in Chib (2007), identification
of Ω01 can be avoided by specifying only the (T+1)-variate distribution (εji, ηi) for each subject
for both treatments. This is our first modelling approach which is based on the switching
regression model, also referred to as the Roy model. In the second model, the shared factor
model, we will assume that all three errors (ε0i, ε1i, ηi) share a common latent factor to which
all correlation between these terms can be attributed.

3.3.1 Switching Regression Models

In the switching regression model (SR) we have to specify only the structure of ωj and Ωj for
both treatments. To do so, we consider two variants of the SR model. In a first variant, the
SRI model, dependence between subsequent outcomes is captured by introducing an individual-
and treatment-specific random intercept bji ∼ N (0,Dj) and specifying, both for j = 0, 1,

εji = 1T bji + ǫji, (3.4)

where bji is assumed to be independent of the errors ǫji, ǫji ∼ NT (0,Σj) and Σj is a diagonal
matrix with elements σ2

j = (σ2j,1, . . . , σ
2
j,T ). Marginalizing over the random intercept bji, the

potential earnings vectors yji have a multivariate normal distribution with covariance matrix
Ωj defined as

Cov(yji) = Ωj = Σj +Dj1T1
′
T =




σ2j,1 +Dj Dj . . . Dj

Dj σ2j,2 +Dj . . . Dj

...
...

. . .
...

Dj Dj . . . σ2j,T


 .

The compound symmetry structure of the covariance matrix implies that the covariance be-
tween outcomes at different points in time remains constant.

As this assumption is potentially too restrictive for the data at hand, we consider as a
more flexible alternative a latent factor structure of Ωj. To specify the switching regression
model with a latent factor (SRF) we introduce individual- and treatment-specific latent factors
b̃ji ∼ N(0, 1) and vectors of time-varying factor loadings λj , to explain the covariance structure
in εji:

εji = λj b̃ji + ǫji, (3.5)

where b̃ji is assumed to be independent of the idiosyncratic errors ǫji. As above, the errors ǫji
follow a normal distribution, ǫji ∼ NT (0,Σj), with Σj being a diagonal matrix with elements
σ2
j = (σ2j,1, . . . , σ

2
j,T ). Marginalizing over the latent factors yields the following covariance

matrix of the potential outcomes,

Cov(yji) = Ωj = Σj + λjλ
′
j =




σ2j,1 + λ2j,1 λj,1λj,2 . . . λj,1λj,T
λj,1λj,2 σ2j,2 + λ2j,2 . . . λj,2λj,T

...
...

. . .
...

λj,1λj,T λj,2λj,T . . . σ2j,T + λ2j,T


 , (3.6)
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which obviously has a more flexible structure than in the SRI model. The compound symmetry
structure of the SRI model arises as that special case where the factor loadings are constant,
i.e. λj =

√
Dj1T .

As shown by Chib (2007) it is sufficient to specify only the joint distribution of the errors
in the selection model and the outcome sequence under treatment j if interest lies in the
identification of the average treatment effect. This means that only the two (T + 1)-variate
distributions of the errors (εji, ηi) have to be specified for both treatments j = 0 and j = 1:

(
εji
ηi

)
∼ NT+1

(
0,

(
Ωj ωj

ω′
j 1

))
, j = 0, 1. (3.7)

The restriction V(ηi) = σ2x = 1 is based on the standard identification argument for probit
models.

We follow here Chib and Jacobi (2008) and model the dependence structure in (3.7) indi-
rectly, by specifying both for the SRI model (3.4) as well as the SRF model (3.5), the (T +1)-
variate joint distribution of ηi and the idiosyncratic errors ǫji in both outcome equations for
as: (

ǫji
ηi

)
∼ NT+1

(
0,

(
Σj ωj

ω′
j 1

))
. (3.8)

This covariance structure implies that ωj = Σ
1/2
j ρj , with correlation ρj = Cor(ǫji, ηi). No

further structure is assumed for the correlations ρj = (ρj,1, . . . , ρj,T ), however restrictions can
arise from the assumption that (ǫji, ηi) has a proper (T + 1)-variate normal distribution and
hence the covariance matrix has to be positive definite.

We would like to emphasize here some specifics of this model: First, as indicated by the
subscript j, the latent variables bji or b̃ji are specific to each potential outcome vector. Second,
the error εji of the potential outcome model is decomposed into the contribution of the latent
variables, which captures only dependence within a vector of potential outcomes and a pure
error which captures dependence between potential outcome and latent utility.

In the following we will denote the models as SRI and SRF if we want to emphasize the
different covariance structures and as SR otherwise. Further, for simplicity we will use b to
address the collection of random intercepts or latent factors for the observed outcomes, i.e.
b = (bx1,1, . . . , bxn,n) in the SRI and b = (b̃x1,1, . . . , b̃xn,n) in the SRF.

3.3.2 Shared Factor Model

An alternative approach to model the panel dependence between outcomes and the treatment
is the factor approach (Carneiro et al., 2003; Heckman, Lopes, and Piatek, 2014). We employ
this approach to specify a shared factor model (SF) for the panel outcomes and the treatment
selection by introducing a latent factor fi ∼ N(0, 1) that captures both the panel correlation
within the potential outcome sequences, as well as the dependence between the outcomes and
the treatment.

Keeping the mean structure of the treatment and potential outcome models as specified in
Section 3.2 we now define the errors in all three models to include the shared latent factor fi,

ηi = λxfi + υi, υi ∼ N (0, 1) , (3.9)

ε0i = λ0fi + ǫ0i, ǫ0i ∼ NT (0,Σ0) , (3.10)
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ε1i = λ1fi + ǫ1i, ǫ1i ∼ NT (0,Σ1) . (3.11)

To identify all parameters in the model, we have fixed the variance of the random factor and
the variance of the pure error in the selection model at 1, but do not restrict any of the factor
loadings.

As in Section 3.2 we assume that the idiosyncratic errors ǫji follow a normal distribution,
ǫji ∼ NT (0,Σj), with Σj being a diagonal matrix with elements σ2

j = (σ2j,1, . . . , σ
2
j,T ), and

that the factor fi is independent of the idiosyncratic errors ǫji as well as υi. An implication
of this specification is that V(ηi) = σ2x = 1+ λ2x. The covariance across the outcomes within a
potential earnings sequence is given as Cov(yji) = Ωj = Σj + λjλ

′
j which is identical to that

of the SRF-model given in equation (3.6).
A particular implication of the shared factor structure in the treatment and outcome models

is the implied dependence between potential outcome sequences. Marginalizing over the latent
factor fi the joint distribution of the error terms is given by the (2T + 1)-variate normal
distribution



ε0i
ε1i
ηi


 ∼ N2T+1


0,



Σ0 + λ0λ

′
0 λ0λ

′
1 λxλ0

λ1λ
′
0 Σ1 + λ1λ

′
1 λxλ1

λxλ
′
0 λxλ

′
1 1 + λ2x




 , (3.12)

which implies that the covariance between the potential outcome sequences is given by Cov(y0i,y1i) =
λ0λ

′
1. Further, the shared factor model implies that the dependence between the treatment

and the outcomes resulting from the endogeneity of the treatment is captured by Cov(yji, x
∗
i ) =

λjλx. Note that, though the signs of factor fi and factor loadings λx,λj are not fully iden-
tified since the likelihood for λxfi is the same as the likelihood for (−λx)(−fi), and also the
likelihoods for λjfi and (−λj)(−fi) are equal, the signs of all elements in the joint covariance
matrix are identified. The correlation between x∗i and yj,it is given by

Cor(x∗i , yj,it) =
λj,tλx√

1 + λ2x

√
σ2j,t + λ2j,t

. (3.13)

In comparison, the SR model specified in the previous section allows for a more flexible struc-
ture in the dependence between the treatment and the outcomes and as a result may provide
a better fit for the data at hand. Also, since we never observe both outcome sequences for
one individual, an advantage of the SR model is that it does not make any assumptions about
the joint distributions of the potential outcome sequences that cannot be verified by the data.
However, an advantage of modeling the dependence between the potential outcome sequences
in the shared factor model is that it enables us to estimate treatment effects beyond the average
treatment effect, for example the treatment effects on the treated and untreated, see Heckman
et al. (2014).

3.4 Observed data models

A specific feature of treatment effects models is their specification in terms of unobserved
variables: The potential outcome sequence y0i is observed only for xi = 0 corresponding to
x∗i < 0, whereas for xi = 1 corresponding to x∗i > 0 only y1i is observed. Moreover the latent
utility is never observed. We investigate now the implications of the models for the observed
data.
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In both modelling approaches the joint distributions of the potential earnings and the latent
utility, p(y0i, x

∗
i ) and p(y1i, x

∗
i ) are (T + 1)-variate normal distributions, given as

(yji, x
∗
i ) ∼ NT+1

((
µ(yji)
µ(x∗i )

)
,

(
Ωj Σ

1/2
j ρj

ρ′
jΣ

1/2
j 1

))
,

(yji, x
∗
i ) ∼ NT+1

((
µ(yji)
µ(x∗i )

)
,

(
Ωj λxλj

λxλ
′
j 1 + λ2x

))
,

in the SR and the SF model, respectively.
The observed treatment xi restricts the range of the latent utility to either I0 = (−∞, 0]

or I1 = [0,+∞), so that even if the latent utilities were available, (yji, x
∗
i ) were not observed

in the full support ℜT+1 but only in the restricted support ℜT × I0 and ℜT × I1, respectively,
for j = 0, 1.

As the distribution of the latent utility conditional on the potential outcome is x∗i |yji ∼

N
(
mji, s

2
j

)
with moments

mji = µ(x∗i ) + ρ′
jΣ

1/2
j Ω−1

j (yji − µ(yji)), s2j = 1− ρ′
jΣ

1/2
j Ω−1

j Σ
1/2
j ρj , (SR)

mji = µ(x∗i ) + λxλ
′
jΩ

−1
j (yji − µ(yji)), s2j = 1 + λ2x(1− λ′

jΩ
−1
j λj), (SF)

the joint distributions of observed earnings sequence and treatment are given as

p(y0i, xi = 0) = p(y0i)

∫ 0

−∞
p(x∗i |y0i) dx

∗
i = p(y0i)(1 − Φ(m0i/s0)),

p(y1i, xi = 1) = p(y1i)

∫ ∞

0
p(x∗i |y1i) dx

∗
i = p(y1i)Φ(m1i/s1),

where Φ(z) denotes the cdf of the standard normal distribution, and p(yji) is equal to the
marginal distribution of yji, given by NT (µ(yji),Ωj).

Which of these two joint distributions has generated the data depends on the realized
treatment xi = j, so that the observed data (yi, xi = j) for subject i comes from

p(yi, xi = j) = p(y0i, xi = 0) I(xi = 0) + p(y1i, xi = 1) I(xi = 1). (3.14)

Hence, the distribution of the observed outcome vector yi given treatment i for subject i follows
as:

p(yi|xi = j) =

{
p(y0i)

1−Φ(m0i/s0)
1−Φ(µ(x∗

i )/σx)
, xi = 0,

p(y1i)
Φ(m1i/s1)

Φ(µ(x∗

i )/σx)
, xi = 1,

(3.15)

which obviously is not a multivariate normal distribution, as mji is a function of the potential
outcome yji.

3.5 Treatment Effects

Under our flexible specifications of the potential outcome models in the previous sections the
difference in the potential outcome sequences is given by the T × 1 vector

∆i = y1i − y0i = 1Tκ+Wiθ + (ε1i − ε0i).
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In both modeling frameworks we can identify a sequence of causal Average Treatment Effects
(ATE) based on the differences in the means of the potential outcome sequences

ATE(W) = E(∆i|W) = 1Tκ+Wθ, (3.16)

where κ captures a common (homogeneous) treatment effect and Wθ a heterogeneous treat-
ment effect depending on subjects’ demographic characteristics such as whether a mother is a
blue collar or a white collar worker. These two types may face very different penalties from
time spent on leave and different dynamic patterns of the treatment effects over the panel
periods. In the estimation section we discuss in further detail how we can estimate these ef-
fects and take into account the empirical distribution of the demographic factors in W in the
computation of the ATE.

While the average treatment effect provides an estimate of the expected gain or loss from
maternity leave of a “typical” mother from the sample controlling for any selection bias, it
is likely to either overstate or understate the gains or losses of a long maternity leave for
mothers who chose the short treatment (untreated) or the long treatment (treated). The
average treatment effects on the treated (TT) and untreated (TU), defined as:

TT (W,v, z) = E(∆i|W,v, z, xi = 1) and TU(W,v, z) = E(∆i|W,v, z, xi = 0) ,

measure those effects taking into account differences across these mother groups both in terms
of observable and unobservable characteristics. In the context of our problem these two effects
might be quite different from the ATE if mothers choose the length based on some information
regarding the expected penalty from the length of leave or their attitudes towards work versus
child care efforts. For example, mothers in jobs with high career prospects might choose a
short leave to avoid extensive loss of human capital that would have strong negative effects if
they were to take a long leave.

In the shared factor model these two effects can be identified from the distribution of
the difference in the potential outcome sequences of subjects, which is based on the joint
distribution of the errors (ε1i, ε0i). The implied joint distribution of the latent utility x∗i and
∆i in the shared factor model is given as

(
x∗i
∆i

)
∼ NT

((
viα1 + ziα2

1Tκ+Wiθ

)
,

(
1 + λ2x λx(λ1 − λ0)

′

λx(λ1 − λ0) (λ1 − λ0)(λ1 − λ0)
′ +Σ1 +Σ0

))
,

and allows to derive, e.g. the average treatment effects on treated and untreated (Heckman
et al., 2014) as

TT (W,v, z) = E(∆i|x
∗
i > 0,W,v, z) = ATE(W) +

λx(λ1 − λ0)
′

σx

φ(−µ(x∗i )/σx)

Φ(µ(x∗i )/σx)
, (3.17)

TU(W,v, z) = E(∆i|x
∗
i < 0,W,v, z) = ATE(W)−

λx(λ1 − λ0)
′

σx

φ(−µ(x∗i )/σx)

1−Φ(µ(x∗i )/σx)
, (3.18)

where φ(z) denotes the pdf of the standard normal distribution and the second term captures
the additional effects on the unobservables. For abbreviation we will use ψTT and ψTU to
denote these additional effects and write in short

TT (W,v, z) = ATE(W) + ψTT (W,v, z), TU(W,v, z) = ATE(W) + ψTU (W,v, z)

.
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4 Bayesian Inference

A fully Bayesian inference is applied to estimate model parameters and treatment effects, both
for the switching regression models as well as the shared factor model introduced in the previous
section. We discuss the choice of prior distributions for all model parameters, followed by a
discussion of performing posterior inference by means of Markov chain Monte Carlo (MCMC)
methods given panel data as in our specific application. In Subsection 4.1, we specify a set of
standard priors, which is extended in Subsection 4.2 to a more flexible set of prior distributions
to implement variable selection in the context of both modeling frameworks. As described in
Subsection 4.3, under both sets of prior specifications inference about model parameters and
treatment effects can be done with standard MCMC methods.

To simplify the discussion throughout this section, we use a more compact notation and
write the structural mean of the selection equation (3.1) as µ(x∗i ) = Ziα, where Zi = (vi, zi)
denotes the 1 × dα covariate vector for subject i in the selection model and α = (α1, α2) is
the corresponding vector of dα regression coefficients. The structural mean of outcome under
treatment j (equations (3.2) and (3.3)) is denoted by µ(yji) = Wjiβ, where

Wji =





(
1T Wi 0T O

)
, for j = 0,(

1T Wi 1T Wi

)
, for j = 1,

denotes the T × dβ covariate matrix for yji in the outcome model and β = (µ,γ, κ,θ) is the
corresponding vector of dβ regression coefficients.

4.1 Priors

Bayesian model specification is completed by assigning prior distributions to all model param-
eters. For each model M we use a prior pM(ΘM), where ΘM denotes the collection of all
parameters in model M. Our priors are of the following structure

pSRI(ΘSRI) = p(β)p(α)
∏1

j=0 p
SR(σj)p

SR(ρj)p
SRI(Dj), (4.1)

pSRF (ΘSRF ) = p(β)p(α)
∏1

j=0 p
SR(σj)p

SR(ρj)p
SRF (λj), (4.2)

pSF (ΘSF ) = p(β)p(α) pSF (λx)
∏1

j=0 p
SF (σj)p

SF (λj). (4.3)

In all three models standard priors for the regression parameters α and β are normal distribu-
tions α ∼ Ndα (a0,A0) and β ∼ Ndβ (b0,B0). To incorporate variable selection we use spike
and slab prior distributions, which will be described in section 4.2.

In the shared factor model the property that x∗i and yji are independent conditioning on
the latent factor fi allows to specify conditionally conjugate priors for all parameters. We use
independent inverse Gamma-priors for the idiosyncratic variances

σ2j,t ∼ G−1 (s0,jt, S0,jt) ,

and normal priors for the factor loadings λx ∼ N (lx0, Lx0) and λj ∼ NT (lj0,Lj0).
In the switching regression models, prior specification for idiosyncratic variances and cor-

relations is more involved. From the lower triangular Cholesky factor Gj of Cov(ǫji, ηi) which
is given as

Gj =

(
Σ
1/2
j 0T

ρ′
j (1−

∑T
t=1 ρ

2
j,t)

1/2

)
,
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it is obvious that positive-definiteness of Gj and hence Cov(ǫji, ηi) is guaranteed if (1 −∑T
t=1 ρ

2
j,t) > 0. Following Chib and Jacobi (2007), we assign to ρj a T -variate Normal prior

NT (r0,R0) truncated to the region yielding a positive definite Cholesky factor Gj and to lnσj

a T -variate Normal distribution NT (c0j ,C0j). Finally, we specify conditionally conjugate pri-
ors for the random intercept variances, Dj ∼ G−1 (dj0,Dj0), in the SRI model as well as for
the factor loadings, λj ∼ NT (lj0,Lj0), in the SRF model.

4.2 Variable Selection with spike and slab priors

The prior choices specified above assume that all covariates in Zi and Wji are included in the
selection and potential earnings models, respectively. In the latter this very general specifi-
cation implies that the effects of all covariates in the outcome model in matrix Wji vary by
treatment as captured by θ, i.e. heterogeneous treatment effects, in addition to the presence
of a constant treatment effect captured by κ. This general model might be overspecified.

We now introduce variable selection to decide which covariates should be included in the
regression models for treatment selection, i.e. in the probit model for selection of treatment xi,
and which covariates in the models for the potential outcomes. In the latter, variable selection
will also enable us to test for the presence of heterogeneous treatment effects captured by θ,
as we have specified the models very generally to allow for covariate effects which differ by
treatment, but this general model might also be overspecified.

In a Bayesian approach, selection of relevant regressors can be performed by specifying spike
and slab prior distributions for the corresponding regression effects captured by α and β. These
prior distributions are mixtures of two components, a spike at zero to shrink small coefficients
to zero and a flat slab component, to leave large effects (nearly) unshrunk. Spike and slab
prior distribution have been widely used in different variants in regression type models, e.g.
Mitchell and Beauchamp (1988); George and McCulloch (1997); Geweke (1996); Ishwaran and
Rao (2005) but also for more general model selection problems (see e.g. Frühwirth-Schnatter
and Tüchler (2008); Frühwirth-Schnatter and Wagner (2010)).

We will use spike and slab prior distributions for the regression effects α and β in all
models. To this aim, we introduce for each regression effect a binary indicator which takes
the value 1, if the effect is assigned to the slab component, and zero otherwise. We assume
conditional independence of the regression effects assigned to the slab component, but other
choices are also possible.

The prior for α is specified as

p(α|ν) =
∏

j:νj=1

pslab(αj)
∏

j:νj=0

pspike(αj), (4.4)

where ν = (ν1, . . . , νdα) is a vector of binary indicators. The indicators are assumed inde-
pendent with p(νj) = πα and πα is assigned a uniform hyper-prior πα ∼ U [0, 1]. We use a
Dirac spike, i.e. a point mass at zero, pspike(αj) = ∆0(αj) and a normal slab pslab(αj) =
p(αj |N (0, A0)).

Similarly, we define a further vector of binary indicators δ = (δ1, . . . , δdβ ) and specify the
prior for β as

p(β|δ) =
∏

j:δj=1

p(βj |N (0, B0))
∏

j:δj=0

∆0(βj), (4.5)
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where the components of δ are independent with p(δj) = πβ and πβ ∼ U [0, 1] .
In the shared factor model the factor loadings λj can be interpreted as regression effects of

the latent factor. Hence it is straightforward to perform selection also for the factor loadings
λ = (λ0,λ1) by assigning a spike and slab prior distribution. We specify the prior for λ as

pSF (λ|δλ) =
∏

k:δλ
k
=1

p(λk|N (0, L0))
∏

k:δλ
k
=0

∆0(λk)

where δλ is the corresponding 2T×1 vector of binary indicators with p(δλj = 1) = πλ. The prior
inclusion probability of the factor loadings πλ is assigned a uniform hyper-prior πλ ∼ U [0, 1].

4.3 Model Estimation

We subsume now in ΘMall parameters of model M, i.e. if variable selection is performed ΘM

includes also the hyper-parameters ν, δ, πα and πβ. The goal is posterior inference for ΘM

based on the respective posterior distribution, which is proportional to likelihood times prior,

p(ΘM|x,y) ∝ pM(ΘM)
n∏

i=1

p(yi, xi|Θ
M). (4.6)

The prior distributions for the SR and SF model are defined in the previous sections and the
likelihood contributions for the two models are given in equation (3.14).

Given the different model specifications, we employ different MCMC sampling schemes for
the switching regression and the shared factor model. However, for both models we augment
the parameter space to improve the tractability of the posterior distribution. As standard, the
MCMC implementation relies on the latent utility specification of the probit model (Albert
and Chib, 1993) and the likelihood contribution of observed outcome and treatment intake,
augmented by the latent utility, is given as

p(x∗i ,yi, xi = j) = p(x∗i ,yji|xi = j)p(xi = j).

We emphasize here that though p(x∗i ,yji|xi = j) is the likelihood of a (T + 1)-dimensional
truncated normal distribution,

p(x∗i ,yji|xi = j) =

{
p(x∗i ,y0i)/P (x

∗
i ≤ 0), if xi = 0,

p(x∗i ,y1i)/P (x
∗
i > 0), if xi = 1,

the total likelihood contribution of subject i is identical with the likelihood contribution from
the joint (T + 1)-variate normal distribution of (x∗i ,yji).

To improve the structure of the likelihood and the posterior for a simulation of the posterior
by standard MCMC methods we further augment the parameter space not only with the
latent utilities {x∗i } but also with the latent variables b in the SR and the latent factors
f = (f1, . . . , fn) in the SF model.

4.3.1 Posterior Inference for the Switching Regression Model

The basis for posterior inference is the augmented posterior distribution

p(ΘSR,x∗,b|y,x) ∝ pSR(ΘSR) p(b)

n∏

i=1

p(x∗i ,yi, xi|Θ
SR,b). (4.7)
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where x∗ = (x∗1, . . . , x
∗
n). For data augmentation with the latent utilities x∗i , these are sampled

from their full conditional distribution. From the joint error distribution given in equation
(3.8) we derive

x∗i |xi = j,yji,b,Θ
SR ∼ N

(
Ziα+ ω′

jΣ
−1
j ǫji, 1− ω′

jΣ
−1
j ωj

)
, (4.8)

where ǫji = yji −Wjiβ − 1T bji in the SRI and ǫji = yji −Wjiβ − λj b̃ji in the SRF model.
Conditioning further on xi truncates this normal distribution to the interval Ixi

.
We sample the indicators (ν, δ), the regression effects (α,β) and the random intercepts

(or factors) b in one block. Marginalizing over the random intercepts (factors), (α,β) is the
vector of regression effects in a multivariate linear normal regression model for (x∗i ,yxi,i), where
variable selection is a standard step. Conditional on the rest of the parameters, also sampling
of random intercepts (in the SRI model) or latent factors (in the SRF model) is a standard
Gibbs draw. As discussed in section 3.3.2, for the SRF model all elements of the covariance
matrix Ωj are fully identified though the signs of the factor loadings and the factors b are not
separately identified. To guarantee sampling from the whole range of the posterior this non-
identifiability is taken into account in posterior sampling by performing a random sign-switch
of b and λj.

Finally, the full conditionals of the remaining parameters σ0,σ1,ρ0,ρ1, given as

p(σj |α,β,b,y,x
∗,x) ∝ pSR(σj)

∏

i:xi=j

p(yji, x
∗
i |σj ,ρj,α,β,b, xi), (4.9)

p(ρj |α,β,b,y,x
∗,x) ∝ pSR(ρj)

∏

i:xi=j

p(yji, x
∗
i |ρj,σj ,α,β,b, xi), (4.10)

are not of closed form and hence these parameters are sampled from their full conditionals using
an Metropolis-Hastings (MH)-step. Full details of all sampling steps are given in Appendix
A.1.

4.3.2 Posterior Inference for the Shared Factor Model

The basis for the posterior inference is the augmented posterior distribution

p(ΘSF ,x∗, f |y,x) ∝ pSF (ΘSF ) p(f) p(x∗,y,x|ΘSF , f). (4.11)

Conditional on the latent factor the likelihood of the joint model is given as

p(y,x,x∗|ΘSF , f) = p(y|β,σ,λ0,λ1, f) p(x,x
∗|α, λx, f),

which is the product of the likelihood contributions from two standard normal regression
models, where all parameters can be drawn directly from their full conditional posterior dis-
tributions under conjugate priors. From the specification of the error terms in these models in
equations (3.9) to (3.11), the latent factors fi have a normal posterior distribution N (fn,i, Fn,i)
with the posterior moments depending on xi = j:

Fn,i = 1/(1 + λ2x +
T∑

t=1

λ2j,t
σ2j,t

), fn,i = (λx,
λj,1
σj,1

, . . . ,
λj,T
σj,T

)

(
x∗i − Ziα

yj,i −Wjiβ

)
. (4.12)
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The non-identifiability of the signs of the latent factors and the factor loadings (discussed in
Section 3.3.2) is taken into account in the sampling scheme via a random sign-switch.

The detailed steps of the sampler are provided in Appendix A.2. The sampling scheme does
not rely on imputation of the unobserved potential outcome, although this would be possible
based on the joint distribution of both potential outcome vectors. However, while we observed
that such a sampler provides essentially the same results it is slower and less efficient with
respect to autocorrelation of the draws.

4.4 Treatment Effects Estimation

4.4.1 Average treatment effects

The average treatment effect for a given covariate vector W can be estimated based on the pos-
terior distribution of the ATE(W) which is obtained by integrating out the model parameters
Θ with respect to the posterior distribution as

p(ATE|W,x,y) =

∫
(1Tκ+Wθ)p(Θ|x,y)dΘ.

An estimate of ATE(W) in terms of the mean of the posterior distribution is obtained as

ÂTE(W) = 1T κ̂+Wθ̂,

where the posterior mean estimates are computed from MCMC draws as κ̂ = 1
M

∑M
m=1 κ

(m)

and θ̂ = 1
M

∑M
m=1 θ

(m).
By integration over the covariates with respect to the empirical distribution of the data

we obtain the insample average treatment effect. For panel outcomes we are interested in the
evolvement of the insample average treatment effect. To capture the dynamics of the insample
average treatment effect, which is not attributable to changes in covariates, we define the
insample average treatment effect at panel time point t, ATE(t), as the mean with respect to
the distribution of the demographic covariates at time point t = 1, i.e. the average treatment
effect at time t for the mothers observed in the sample with their covariate values at t = 1.
ATE(t) can be estimated by

ÂTE(t) = κ̂+
1

n

n∑

i=1

W̃i,1(t) θ̂,

where W̃i,1(t) denotes the covariate vector of subject i with panel dummies for time point t
and values of all other covariates (except panel dummies) observed at t = 1.

4.4.2 Treatment effects on treated and untreated

As discussed in Section 3.5 treatment effects of treated and untreated are available only from
the joint distribution of potential outcomes, which is not specified in the switching regression
models, but implied by the shared factor in the SF model. Similarly to the average treatment
effect the posterior distribution of the treatment effect of the treated and untreated given in
equations (3.17) and (3.18) can be expressed as

p(TT |W,Z,x,y) =

∫ (
1Tκ+Wθ + ψTT (Θ)

)
p(Θ|x,y)dΘ,
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p(TU |W,Z,x,y) =

∫ (
1Tκ+Wθ + ψTU (Θ)

)
p(Θ|x,y)dΘ,

where the model parameters are integrated out with respect to their posterior distribution.
We estimate TT (W,Z) and TU(W,Z) by the mean of the posterior distribution, which is
approximated from the MCMC draws as

T̂ T (W,Z) = ÂTE(W) +
1

M

M∑

m=1

ψTT (Θ
(m)),

T̂U(W,Z) = ÂTE(W) +
1

M

M∑

m=1

ψTU (Θ
(m)).

To estimate in-sample treatment effects on treated and untreated we integrate over the em-
pirical distribution of covariates. Corresponding to the treatment effect at panel time point t,
ATE(t) defined above we estimate the insample treatment effect on treated and untreated at
panel time point t as

T̂ T (t) =
1

n1

∑

i:xi=1

T̂ T (W̃i,1(t),Zi),

T̂U(t) =
1

n0

∑

i:xi=0

T̂ T (W̃i,1(t),Zi).

Here nj, j = 0, 1 is the number of subjects with xi = j observed at t = 1.

5 Simulation study

We have performed a small simulation study to test the performance of the MCMC samplers
and to explore consequences of a mis-specification of the covariance structure of the panel
outcomes or dependence between outcome and latent utility. The details of the simulation
design described below were chosen to help illustrate the effect of the mis-specification of the
dependence structure on the estimation results.

5.1 Simulation Setup

We have generated three data sets of n = 50000 subjects with T = 4 panel periods from each
of the three models models specified in Section 3 (data 1: SRI, data 2: SRF and data 3: SF).
In each case the structural mean of the latent utility (equation (3.1)) is specified as

µ(x∗i ) = Ziα = α10 + α11v1i + α12v2i + α2zi

with Zi = (1, v1i, v2i, zi), where v1i is standard normal and v2i and zi are binary variables with
p(v2i = 1) = p(zi = 1) = 0.5, and α = (α1, α2) = (−0.9, 0.8, 0, 1.5). To generate the outcome
sequences (equations (3.2) - (3.3)) we used a linear predictor with v1i and v2i and dummies for
the panel time points t = 2, 3, 4 as regressors. The common intercept and covariate effects were
set at (µ,γ) = (3, 1, 0, 0.1, 0.15, 0.2), and the constant and heterogeneous treatment effects of
the covariates at (κ,θ) = (−0.5, 0, 0.2,−0.1, 0, 0.1). The implied average treatment effects for
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the four panel periods are (−0.4,−0.5,−0.4,−0.3). Error variances were set to σ2
0 = 0.2514

and σ2
1 = 14.

For the two data sets generated from the switching regression models we set the correlations
at ρ0 = (0.6, 0.5, 0.4, 0.3) and ρ1 = −ρ0 to capture a dependence between the latent utility
and the potential outcomes that varies over time. The covariance structures for the potential
outcomes were defined by setting the random intercept variances to D0 = 0.4 and D1 = 0.8
for data set 1 under the SRI, and by setting the factor loadings to λ0 = (0.4, 0.35, 0.3, 0.25)
and λ1 = (0.7, 0.6, 0.5, 0.4) for data set 2 under the SRF. For data set 3, generated under the
SF model, we set λx = 0.7 and λ0 = (0.6, 0.6, 0.5, 0.5) and λ1 = −λ0. The settings for λ0

and λ1 imply a full covariance matrix for the potential outcomes with the covariances across
the potential outcomes varying over time under SRF and SF models, compared to the more
restrictive compound symmetry structure under the SRI. The implied comparable marginal
correlations between latent utility and potential outcomes in data sets 1 to 3, marginalized
over the latent factor or the random intercepts respectively, are

Cor(x∗i ,y0i) = (0.37, 0.31, 0.25, 0.29) Cor(x∗i ,y1i) = (−0.44,−0.37,−0.30,−0.22)

Cor(x∗i ,y0i) = (0.47, 0.41, 0.34, 0.27) Cor(x∗i ,y1i) = (−0.49,−0.43,−0.36,−0.28)

Cor(x∗i ,y0i) = (0.44, 0.44, 0.40, 0.40) Cor(x∗i ,y1i) = (−0.30,−0.30,−0.26,−0.26).

For each data set Bayesian inference was carried out under each of the three model specifications
with variable selection on the regression effects. The reported results are based on 10,000
iterations, following 10,000 burn-in iterations of the corresponding MCMC algorithm described
in Section 4. For a faster convergence of the sampler, the first 5000 burn-in iterations are drawn
from the full model which enables the MCMC chain to reach regions of higher posterior density
without the additional computational burden of variable selection. As common in the variable
selection literature we do not perform variable selection on the intercept.

5.1.1 Results for Regression Effects

In Table 1 we report the estimates of the regression effects in the potential outcome models
for all three data sets (row blocks) under the SRI, SRF and SF models (column blocks). The
diagonal cell blocks in the table refer to the estimates when the inference is based on the correct
model. Bold numbers indicate biased estimates where the true value is not contained in the
99% posterior density interval. A star indicates that the inclusion probability is estimated
above 0.5, suggesting that the covariate should be included in the model.

The results show that the true parameters are recovered well when the correct model
is applied for the inference. However, when the inference is based on an incorrect model
specification (off-diagonal cell blocks), the estimated regression effects in the potential outcome
models are partially effected by model mis-specification. As shown in the next section this is
due to the different assumptions about the dependence structures across the three models that
result in biased estimates of the dependence parameters.

Here we observe biased estimates of the intercept µ, the constant treatment effect κ and
the modified effects of v1 and panel time. An exception is the SRF model for data set 1. Being
more general than the SRI model, for the data set 1 it yields almost identical results to the SRI
model, whereas for data set 2 some panel effects and their modifications are biased under the
SRI model. Further, for both data sets 1 and 2 estimates of intercept modification and panel
time effects are biased when employing the SF model. Finally, for data set 3 both the SRI and
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Table 1: Results outcome equation: posterior means, sd (in parentheses) of regression effects

SRI Model SRF Model SF Model
(µ,γ) (κ,θ) (µ,γ) (κ,θ) (µ, γ) (κ,θ)

data 1
µ, κ 2.998 (0.007) -0.505 (0.015)* 2.997 (0.007) -0.501 (0.016)* 2.991 (0.006) -0.617 (0.013)*
v1 1.007 (0.004)* -0.000 (0.001) 1.007 (0.004)* 0.000 (0.001) 1.019 (0.004)* 0.000 (0.003)
v2 0.000 (0.002) 0.186 (0.013)* 0.000 (0.002) 0.185 (0.013)* 0.000 (0.002) 0.185 (0.013)*

t = 2 0.104 (0.006)* -0.098 (0.013)* 0.105 (0.006)* -0.098 (0.014)* 0.124 (0.004)* -0.060 (0.011)*
t = 3 0.163 (0.006)* 0.000 (0.002) 0.163 (0.006)* 0.000 (0.003) 0.203 (0.004)* 0.073 (0.011)*
t = 4 0.216 (0.006)* 0.105 (0.013)* 0.218 (0.006)* 0.099 (0.014)* 0.280 (0.004)* 0.198 (0.011)*

data 2
µ, κ 2.966 (0.006) -0.515 (0.013)* 2.998 (0.006) -0.503 (0.012)* 3.012 (0.005) -0.557 (0.009)*
v1 0.998 (0.003)* 0.000 (0.001) 0.998 (0.003)* -0.000 (0.001) 1.006 (0.002)* 0.000 (0.000)
v2 0.000 (0.001) 0.202 (0.009)* 0.000 (0.000) 0.201 (0.009)* 0.000 (0.001) 0.201 (0.009)*

t = 2 0.127 (0.007)* -0.106 (0.015)* 0.110 (0.006)* -0.096 (0.014)* 0.108 (0.005)* -0.090 (0.011)*
t = 3 0.196 (0.006)* 0.004 (0.012) 0.161 (0.006)* 0.000 (0.003) 0.158 (0.005)* 0.000 (0.002)
t = 4 0.249 (0.006)* 0.145 (0.014)* 0.194 (0.006)* 0.118 (0.014)* 0.208 (0.005)* 0.145 (0.011)*

data 3
µ, κ 2.942 (0.006) -0.476 (0.017)* 2.959 (0.006) -0.476 (0.017)* 2.997 (0.007) -0.513 (0.010)*
v1 0.987 (0.005)* 0.010 (0.012) 0.984 (0.005)* 0.017 (0.013)* 1.000 (0.003)* -0.000(0.002)
v2 0.000 (0.001) 0.195 (0.009)* 0.000 (0.001) 0.195 (0.009)* 0.000 (0.001) 0.195 (0.009)*

t = 2 0.090 (0.007)* -0.064 (0.017)* 0.095 (0.005)* -0.072 (0.015)* 0.108 (0.005)* -0.093 (0.010)*
t = 3 0.198 (0.006)* -0.001 (0.006) 0.157 (0.006)* -0.000 (0.003) 0.153 (0.004)* -0.000 (0.002)
t = 4 0.240 (0.006)* 0.123 (0.015)* 0.201 (0.007)* 0.117 (0.016)* 0.205 (0.005)* 0.105 (0.011)*

the SRF model yield biased estimates of the intercept µ, as well as the effect of variable v1.
Mis-specification may affect correct selection of variables as a result of biased estimates. For
example, in data set 1 the SF model incorrectly selects the effect modification for t = 3, while
in data set 3 the effect modification of v1 is incorrectly selected under the SRF model with
the inclusion probability estimated at 0.692. Under the SRI model the smaller bias results in
inclusion probability just below 0.5.

In the case of the selection model, the estimates for the regression effects are almost identical
across three models for each data set, suggesting that the estimation of the parameters as well
as variable selection in the selection equation is not affected by the mis-specification (see Table
12 in Appendix B).

5.1.2 Results for Dependence Structures

The main differences between the three models are their assumptions with respect to the de-
pendence structure within the latent outcome vectors and between outcomes and latent utility.
We recall that the assumptions of the switching regression and shared factor models with re-
spect to the dependence between the latent utility and potential outcomes are rather contrary:
in the shared factor model all correlation between latent utility and potential outcomes is
attributed to the latent factor which also determines the dependence structure within the po-
tential outcome vectors. In the switching regression models, the latent variables only capture
the dependence within the potential outcomes, whereas dependence between the error terms
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of the potential outcome vector and the latent utility is captured by the correlations ρj . It
is therefore more suitable to focus on the marginal correlations between latent utility and the
panel outcomes (marginalizing over latent factor or random intercept) when comparing the
estimated correlations across the three model specifications. For the shared factor model, this
correlation is given in equation (3.13) and for the switching regression models the correlation
marginalized over the random intercept and the latent factor is given as

SRI: Cor(yj,it, x
∗
i ) =

ωj,t√
σ2j,t +Dj

, (5.1)

SRF: Cor(yj,it, x
∗
i ) =

ωj,t√
σ2j,t + λ2j,t

, (5.2)

where the numerators are from the diagonal of the marginalized covariance matrix Ωj of the
potential outcomes. In Table 2 we report the differences between estimated and the true
correlations. Estimates, where the true, data generating value is not included in the 99%
posterior interval are given in bold.

Table 2: Marginal correlation between latent utility and outcome: difference between posterior means
and true values

SRI Model SRF Model SF Model
data t treatment 0 treatment 1 treatment 0 treatment 1 treatment 0 treatment 1

1 1 -0.001 (0.011) 0.016 (0.011) -0.002 (0.009) 0.013 (0.011) -0.029 (0.008) 0.159 (0.007)
2 0.011 (0.011) 0.012 (0.011) 0.011 (0.012) 0.009 (0.013) 0.031 (0.008) 0.084 (0.007)
3 0.024 (0.011) 0.011 (0.011) 0.024 (0.011) 0.003 (0.013) 0.096 (0.008) 0.008 (0.007)
4 0.028 (0.012) -0.008 (0.013) 0.029 (0.012) -0.006 (0.015) 0.158 (0.008) -0.065 (0.007)

2 1 -0.103 (0.013) 0.064 (0.011) -0.021 (0.011) 0.007 (0.010) 0.013 (0.008) 0.057 (0.008)
2 -0.034 (0.013) 0.040 (0.012) 0.007 (0.012) -0.007 (0.012) 0.034 (0.007) 0.039 (0.008)
3 0.032 (0.013) -0.020 (0.012) 0.022 (0.012) -0.018 (0.011) 0.050 (0.007) 0.035 (0.008)
4 0.057 (0.014) -0.056 (0.013) -0.019 (0.013) 0.001 (0.013) 0.068 (0.007) -0.008 (0.008)

3 1 -0.107 (0.008) 0.037 (0.017) -0.075 (0.007) 0.017 (0.168) -0.009 (0.009) 0.012 (0.008)
2 -0.147 (0.008) 0.014 (0.017) -0.103 (0.005) -0.004 (0.182) -0.007 (0.009) 0.007 (0.008)
3 -0.026 (0.006) -0.034 (0.018) -0.074 (0.006) -0.007 (0.170) -0.008 (0.009) 0.001 (0.007)
4 -0.054 (0.006) -0.033 (0.019) -0.095 (0.010) 0.001 (0.189) -0.009 (0.009) 0.012 (0.007)

As expected, estimates correspond well to the true values when the appropriate model
is used for the analysis. Further as the SRF model is more flexible than the SRI model
with respect to the dependence structure of panel outcomes, it can capture the correlation
structure implied by the SRI, yielding essentially the same estimates for data set 1. In the
SF model the assumption Cov(x∗i ,yji) = λxλj can be too restrictive with the covariance being
proportional to λj by factor λx and the estimation of λj driven by the outcome covariances.
For data sets 1 and 2, where the correlations to the latent utility are not proportional to
λj for t=1,. . . , 4, the SF model yields biased estimates. Although the SR models allow for
more flexible correlation structures, the estimated marginal correlations in data set 3 under
these two models also deviate considerably from the true values. In this case the positive
definiteness condition for Cov(εji, ηi) restricts the range of possible correlations: Given the
dependence structure of yji, where the latent factor accounts for at least 50% of the composite
error, the true marginal correlations between yji and x

∗
i could be obtained in an SR model only
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with very high correlations between the pure error of the outcomes and the error in the latent
utility model. For instance, the value for correlation parameter ρ0 yielding the true marginal
correlations would be ρ0 ≈ (0.69, 0.69, 0.57, 0.57) which is far beyond the region

∑T
t=1 ρ

2
j,t < 1

required for positive definiteness.

5.2 Results for Average Treatment Effects

Figure 2 shows the true and the estimated average treatment effects for the three data sets
that were obtained under the different model specifications. As expected, the estimated effects
are almost identical to the true values if the correct model is employed for inference and we
again observe that the SRF model yields almost identical estimates to the SRI model for data
set 1. In these cases the true values of all the model parameters, including the covariance
and correlations parameters, were well recovered. However, in the remaining cases the biased
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Figure 2: True and estimated average treatment effects in different models for data 1-3

parameter estimates resulting from a model mis-specification discussed above have implications
for the estimation of the Average Treatment Effects. Figure 2 shows that these incorrect model
based estimates exhibit larger deviations from the true effects. If the regression effects in the
potential outcome models are biased and the dependence structure between outcome and latent
utility cannot be captured by the employed model, the estimates of the ATE are negatively
affected.

In these cases one or more of the average treatment effects are biased, as can be seen from
Table 3. The table reports the difference between the true and estimated average treatment
effects. Bold numbers indicate estimates when the true value is not contained in the 99%
posterior density interval and slanted bold numbers indicate estimates where the true value is
not contained in the 95% posterior density interval. Our results also indicate that capturing the
correlation between latent utility and outcome might be more important than the correlation
structure within the outcome vectors in the context of the average treatment effects: in data
set 2 the SRI model yields only slightly biased estimates compared to those from the SF model.

5.3 Inefficiency factors and estimation issues

The results discussed above show that the sampler performs well, with posterior estimates
recovering the true parameter values well if the correct model is used for inference. We now
turn to other aspects of the performances for the three samplers.
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Table 3: Average Panel Treatment Effects: difference between posterior mean and true value, sd (in
parentheses)

data t SRI SRF SF

1 1 -0.012 (0.014) -0.009 (0.014) -0.124 (0.011)
2 -0.001 (0.015) -0.007 (0.017) -0.084 (0.011)
3 -0.012 (0.014) -0.008 (0.014) -0.051 (0.011)
4 -0.007 (0.016) -0.009 (0.018) -0.026 (0.011)

2 1 -0.014 (0.012) -0.003 (0.011) -0.056 (0.008)
2 -0.020 (0.013) 0.001 (0.013) -0.046 (0.010)
3 -0.010 (0.012) -0.003 (0.011) -0.056 (0.008)
4 0.031 (0.013) 0.015 (0.013) -0.011 (0.010)

3 1 0.022 (0.017) 0.021 (0.017) -0.015 (0.009)
2 0.058 (0.018) -0.049 (0.021) -0.009 (0.010)
3 0.028 (0.017) 0.021 (0.017) -0.016 (0.009)
4 0.044 (0.018) 0.039 (0.018) -0.011 (0.010)

For the SF model inefficiency factors are satisfactory for all parameters. As noted in
Appendix B, the marginal variance of the latent utility is 1+λ2x in the SF model, and therefore
only parameters in the rescaled probit model can be compared to the SR model. Whereas
regression effects in the selection equation as well as the factor loading λx can suffer from high
autocorrelations, the parameters in the rescaled probit model exhibit small inefficiency factors
from 2 to 11.

Inefficiency factors are generally higher in the SR models estimates. While the sampler for
the SF model requires only Gibbs steps due to the simpler modeling of the correlation between
latent utility and outcomes, the SR models involve MH-steps usually associated with higher
autocorrelation in the chain. In particular the inefficiency factors for the correlation parameters
are large, leading to inefficient estimation of the marginal correlations (the highest inefficiencies
were observed in data set 1 with up to roughly 300 for the SRI and the SRF model). Also,
draws of the regression effects α in the selection equation show higher autocorrelations than
under the SF model (inefficiency factors up to 40-50 in SRI and the SRF model).

Finally, due to the simpler sampling scheme computation is much faster for the SF model
than for the SR models by a factor of roughly 20, with the SRF model being the computation-
ally the most intensive model to fit.

6 Application

6.1 Data and Sample

The data for our analysis comes from two data sets, one is the Austrian Social Security Data
Base (ASSD), which is an administrative data set of the universe of Austrian employees and
provides detailed information on employment spells and maternity leave spells, as well as
demographic information on mothers and information on employers. The second is a data set
collected as basis for wage taxes.

For our analysis we focus on women that gave birth within a 4 years period around the
change in the parental leave policy in July 2000 and consider those who gave birth between
July 1998 and June 2002. This period was chosen to (i) create a sample with a balanced
window of mothers before and after the policy change, and (ii) to ensure that we can observe a
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reasonable number of periods for each mother after the end of her return to the labor market
for our panel analysis. For women who have more than one child between July 1998 and June
2002 we will consider the last child birth in the period.

To create a comparable sample of mothers and their earnings after reentry, we restrict our
attention to mothers who returned to the labor market after the end of the maternity leave
(or more precisely within 30 days after the end of maternity leave). Additionally we restrict
the data to include only mothers with earnings above 1100 Euro per year. We further focus
on women that were employed in the private sector in the year before child birth to ensure
eligibility for the standard maternity leave policy regimes in place at the time. This restriction
also enables us to compute a baseline earnings variable to account for the earnings level before
the birth of the child (first child if more that one in the considered period).

Finally, to ensure the identification of common year effects and panel effects separately by
treatment status we consider mothers who return from 2000 until the year 2008 and for whom
we have at least 4 consecutive panel observations. Table 4 shows the distribution of the data
in the sample by (contribution) year and panel period for both treatment groups.

year t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 total*
2000 825/207 0/0 0/0 0/0 0/0 0/0 1,032
2001 5,676/381 825/207 0/0 0/0 0/0 0/0 7,089
2002 5,985/697 5,676/381 825/207 0/0 0/0 0/0 13,771
2003 1,088/4,129 5,985/697 5,676/381 825/207 0/0 0/0 18,988
2004 457/7,179 1,088/4,129 5,985/697 5,676/381 825/206 0/0 26,622
2005 84/4,343 457/7,179 1,088/4,129 5,985/697 5,676/381 820/206 31,026
2006 0/0 84/4,343 457/7,179 1,088/4,129 5,985/694 5,643/379 29,960
2007 0/0 0/0 84/4,343 457/7,179 1,086/4,114 5,943/693 23,899
2008 0/0 0/0 0/0 84/4,343 454/7,109 1,075/4,087 17,152
total 14,115/16,936 14,115/16,936 14,115/16,936 14,115/16,936 13,985/12,504 13,481/5,365 169,539

Table 4: Distribution of mothers in the sample by contribution year and panel period for each treatment
group. total* refers to x = 0 and x = 1 observations.

The sample restrictions result in an unbalanced sample of 31,051 mothers that are observed
over 4-6 consecutive panel periods, i.e. have no breaks in their employment histories (working
at least 360 days the year following the end of the maternity leave). Since we based our analysis
on yearly earnings we define the first earnings observation for the year after their return when
they report to work at least 360 days.

In Table 5 we present some summary statistics for the sample. Overall 58% of mothers
in the sample went on leave under the new leave policy. Most mothers have either one child
(49.7%) or two children (40.8%), and of the remaining almost all have 3 children. Based on
the distribution of the number of children we define a dummy variable for having two children
and a dummy variable for having more than 2 children.

An interesting point to note is that while overall 58% of the mothers took leave under the
new policy, the proportion is 13% of the mothers with short leave and 95% of the mothers
with long leave. Again, this confirms the large positive impact of the increase in the maternity
benefit period from 18 months to 30 months on the lengths of leave taken by mothers.

6.2 Model Specifications

We now specify the covariate vectors for the selection and potential outcome models for the
analysis of the earnings effects based on the unbalanced sample of mothers described in the
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Overall Sample x = 0 x = 1
Variable mean sd mean mean
z 0.58 0.13 0.95
age mother 30.47 4.88 30.45 30.49
number of children 1.62 0.71 1.62 1.61
working experience (at birth) 9.39 4.58 9.24 9.51
blue collar 0.31 0.32 0.29
same employer 0.74 0.80 0.69
real earnings* base year 20689.44 9840.47 20776.58 20616.81
real earnings* year 1 15997.88 8719.40 17603.46 14659.74

Table 5: Selected sample summary statistics. * in EUR

previous section under switching regression models and the shared factor model. For the
selection model into the long leave treatment we specify the covariate vector Z to include
demographic control variables and controls referring to the labor market experience of mothers
before maternity leave: two indicator variables for 2 children or more than two children; an
indicator variable for high work experience (above median) before maternity leave; an indicator
for blue collar; and a control for earnings before maternity leave for first child or (if more than
10 years since birth of first child year based on earnings before the birth of last child) in terms
of indicators for baseline earnings quartiles.

These controls are also included in the potential outcome models, as well as an indicator
whether a mother returns to the same employer. In addition we include flexible controls for
the panel periods and a quadratic time trend to account for two specific features of the data,
strong panel period and year effects. Figures 3 and 4 illustrates these data features. The
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Figure 3: Average log earnings by year with panel period held fixed.

graphs of average log earnings by year holding the panel periods fixed at 1 or 4 in panels (a)
and (b) of Figure 3 respectively point to clearly present and potentially non-linear calender
year effects in the data.

The graphs in Figure 4 show the average log earnings by panel period for short leave
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Figure 4: Average log earnings by panel period with year fixed.

mothers (panels (a) and (b)) and long leave mothers (panels (c) and (d)) holding the calender
year fixed. Due to the structure of the data (see Table 4) we graph the average log earnings
for three panel periods in a given year, which ensures a reasonable number of observations for
each panel period and treatment group. While we need to keep in mind that the figures are
based on different years and thus not directly comparable, and reflect raw earnings summaries
without controlling for any other factors, they are a strong indicator that mothers’ earnings
increase substantially in the years (panel periods) following their return to the labor market.
The most likely reason behind this pattern is that mothers increase their working hours as
their child gets older, partially driven by the better availability of child care options for older
children. Since the data do not include information on working hours, this effect is reflected
in an increase in yearly earnings. Also, the panel effects are likely to differ across the two
treatment groups, for example due to the fact that mothers with a short leave return when
their child is on average younger compared to mothers returning after a long leave.

In order to capture the year effects, which are assumed to be common across the treatment
groups with mothers facing the same labor market, and dynamic panel effects by treatment
group we include a quadratic time trend (common across both potential outcome sequences
and excluded from variable selection) and indicators for the panel periods in the potential
earnings models, so that the means of potential outcome models are specified as

µ(y0i) = 1Tµ+Wiγ1 + IPiγ2 + cγ3 + c2γ4,

µ(y1i) = 1T (µ+ κ) +Wi(γ1 + θ1) + IPi(γ2 + θ2) + cγ3 + c2γ4,

where IPi refers to the matrix of indicators for panel periods 2 to 6 (panel period 1 is base
category) and c is calendar year - 2000.

6.3 Results

In the following we present the results from our prior-posterior analysis of mothers’ earnings
after a short and long maternity leave under the three modeling approaches discussed in the
paper, the two switching regression model specifications with a random intercept (SRI) or
latent factor (SRF) and the shared factor model (SF). Bayesian inference was implemented
both with and without variable selection. In the discussion below we focus on the model
specifications with stochastic variable selection. All results are based on 10,000 runs of the
corresponding MCMC algorithm following a burn-in period of 10,000 iterations for which the
draws are discarded to allow for convergence of the sampler.
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6.3.1 Selection and Earnings Model Estimates with Variable Selection

We first present the results on the parameter estimates for the selection model into the ma-
ternity leave treatment for all three models. Table 6 below reports the posterior means and
standard deviations as well as the estimated inclusion probabilities for the two versions of the
switching regression model (SRI and SRF) and the shared factor model (SF).

Table 6: Results selection equation: posterior means, sd (in parentheses) and posterior inclusion
probabilities of regression effects; *estimated inclusion probability, no selection on intercept; results for
SF with variance adjustment

SRI Model SRF Model SF Model
mean (sd.) prob* mean (sd.) prob* mean (sd.) prob*

intercept -1.529 (0.033) – -1.540 (0.029) – -1.575 (0.032) –
z 2.792 (0.023) 1.000 2.793 (0.026) 1.000 2.825 (0.022) 1.000
child 2 0.025 (0.034) 0.396 0.021 (0.030) 0.366 0.051 (0.037) 0.713
child ≥ 3 -0.018 (0.038) 0.217 -0.026 (0.045) 0.287 -0.015 (0.036) 0.186
experience 0.072 (0.032) 0.899 0.091 (0.023) 0.996 0.101 (0.025) 0.997
blue collar -0.066 (0.042) 0.778 -0.043 (0.042) 0.568 -0.027 (0.038) 0.382
int exp./ blue -0.010 (0.033) 0.111 -0.018 (0.020) 0.198 -0.018 (0.040) 0.206
base-earn Q2 0.001 (0.007) 0.025 0.002 (0.011) 0.055 0.002 (0.011) 0.051
base-earn Q3 -0.000 (0.004) 0.018 -0.001 (0.005) 0.024 -0.001 (0.006) 0.025
base-earn Q4 -0.131 (0.028) 0.999 -0.135 (0.026) 1.000 -0.150 (0.026) 1.000

In all three models we observe a strong positive effect of the policy change and work
experience before the maternity leave for selection into long maternity leave, while having base
earnings in the highest quartile has a negative effect for selection into long leave. Having one
child already has a positive effect on selection into long leave under the SF model, while the
estimated effect is much lower and not selected under the switching regression models, with
inclusion probability of 0.396 and 0.366. Being a blue collar worker is found to have a negative
effect on taking up a long leave under the SRI model. In the other two models the coefficient
estimate is also negative but smaller with the estimated inclusion probabilities even below
0.5 in the SF model. Having more than two children or baseline earnings in the 2nd and 3rd
quartile appear to have no effect on selection into the long maternity leave treatment, the same
is found for the interaction of experience and being a blue collar worker.

Table 7 reports the estimates of the intercept and the covariate effects, that can vary by
treatment state, in the earnings model. For each model the first column presents the posterior
means and standard deviations on the common effect (µ,γ1,γ2) and the second column for
the additional effect under the long leave treatment (κ,θ1,θ2). For a better reading of the
table estimated inclusion probabilities above 0.5 are indicated by “*”. First we notice that
the three models agree in terms of which covariates affect the yearly earnings (selected into
the model): experience, being a blue collar worker, having base earnings above the 1st the
quartile, returning to the same employer and the panel period, as well as the sign of their
effect. An interesting feature is the steady increase in the effects of the panel periods. While
the exact magnitude of the effects varies slightly across the three models, the effect roughly
triples from the 2nd to the 6th period. One obvious explanation for this pattern is that mothers
increase the hours they work as the (youngest) child gets older and more child care options
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Table 7: Results Earnings Model: posterior means, sd (in parentheses); inclusion of regression effects
based on posterior inclusion probabilities > 0.5 indicated by “*”

SRI Model SRF Model SF Model
treatment 0 + treatment 1 treatment 0 + treatment 1 treatment 0 + treatment 1

intercept 9.351 (0.014) -0.141 (0.013)* 9.334 (0.012) -0.125 (0.011)* 9.329 (0.011) -0.109 (0.010)*
child 2 -0.000 (0.001) -0.000 (0.002) -0.000 (0.001) -0.000 (0.001) -0.000 (0.001) -0.000 (0.001)
child >3 0.000 (0.001) 0.000 (0.002) 0.000 (0.001) 0.000 (0.002) 0.000 (0.000) 0.000 (0.002)
exp -0.096 (0.008)* 0.004 (0.010) -0.087 (0.008)* 0.005 (0.010) -0.086 (0.007)* 0.003 (0.009)
blue collar -0.120 (0.007)* 0.000 (0.002) -0.103 (0.006)* 0.000 (0.015) -0.102 (0.007)* 0.000 (0.002)
int. exp/blue 0.002 (0.008) 0.016 (0.018) 0.001 (0.004) 0.007 (0.013) 0.001 (0.003) 0.007 (0.013)
base-earn Q2 0.064 (0.007)* 0.000 (0.002) 0.068 (0.006)* 0.000 (0.002) 0.069 (0.006)* 0.000 (0.002)
base-earn Q3 0.281 (0.011)* -0.039 (0.016)* 0.292 (0.010)* -0.049 (0.012)* 0.291 (0.009)* -0.047 (0.012)*
base-earn Q4 0.609 (0.010)* -0.106 (0.013)* 0.615 (0.010)* -0.117 (0.012)* 0.611 (0.009)* -0.117 (0.012)*
eq. emp. 0.040 (0.005)* 0.000 (0.001) 0.051 (0.005)* 0.001 (0.003) 0.051 (0.005)* 0.000 (0.001)
panel t=2 0.070 (0.006)* 0.099 (0.007)* 0.071 (0.006)* 0.095 (0.007)* 0.073 (0.005)* 0.061 (0.005)*
panel t=3 0.117 (0.007)* 0.125 (0.006)* 0.116 (0.007)* 0.118 (0.006)* 0.118 (0.006)* 0.094 (0.006)*
panel t=4 0.165 (0.010)* 0.146 (0.007)* 0.162 (0.009)* 0.139 (0.007)* 0.163 (0.008)* 0.107 (0.005)*
panel t=5 0.219 (0.012)* 0.151 (0.007)* 0.217 (0.012)* 0.142 (0.007)* 0.215 (0.010)* 0.113 (0.006)*
panel t=6 0.271 (0.014)* 0.181 (0.008)* 0.267 (0.014)* 0.169 (0.008)* 0.262 (0.012)* 0.132 (0.007)*
(year − 2000) 0.039 (0.004) 0.036 (0.004) 0.033 (0.004)
(year − 2000)2 -0.004 (0.0002) -0.004 (0.0002) -0.004 (0.0002)

become available. Since our outcome variable is yearly earnings it subsumes any effects of
changes in working hours. As expected we observe strong positive effects of having higher base
earnings (especially in the highest two quantiles), and returning to the sample employer, and
a negative effect for mothers who are blue collar workers. Interestingly experience seems to
have a negative effect on earnings here but that is likely a result of not being able to control
for hours and mothers with more experience deciding and being able (to afford) to increase
their hours more slowly after returning to work.

Second, we observe that all three models indicate an additional effect under the long treat-
ment for the intercept as well as having base earnings in the 3rd and 4th quartile and the panel
period. Again we observe the same sign of the additional effects under long leave in the three
models, with a negative constant earnings effect, an earnings penalty for mothers with base
earnings in the third and fourth quartile as well as higher panel effects in all periods under long
leave. These additional effect contribute to the heterogeneous treatment effect. We do notice
some variation in the exact magnitude of the panel effects for long leave mothers (as we did
in the common panel effects), but we again observe a steady increase in the coefficients over
the panel periods. This seems to again reflect at least in part the increase in work hours, as
the child gets older. Finally, the three models yield almost identical estimates of the quadratic
year effects.

Overall, the above results point to the importance of a flexible modeling of the dynamic
panel effects and presence of heterogeneous treatment effect rather than just a constant treat-
ment effect commonly assumed in the literature. The results also show that the specifics of the
different model specifications have some effect on the size of the coefficients and estimated in-
clusion probabilities. The differences across the models will be more visible in the next section
when we look at the covariance and correlations structures implied by the three models.
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6.3.2 Earnings Dynamics and Treatment Effects

In this section we present results on the potential earnings dynamics and the earnings effects
from the three models. The upper panel in Figure 5 graphs the potential log earnings dynamics
in terms of the posterior means of the potential log earnings distributions implied by the three
models, the lower panel gives box plots of the average treatment effects in terms of log earnings.
In all three models we observe that mothers with a long leave start out with considerably lower
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Figure 5: Dynamics of average potential log earnings for short and long leave mothers (upper panel)
and average treatment effects under the two switching regression models and the shared factor model
(lower panel).

potential earnings than mothers with a short leave in the first period of their return to the
labor market, with the gap decreasing over the next 4-5 panel periods. All three models thus
suggest that long leave mothers eventually catch up with those who took a short leave.

However, the exact dynamics of the potential earnings vary across the models. The two
specifications of the switching regression model imply that long leave mothers close the gap
entirely and catch up with short leave mothers 5 years after the return. The shared factor
model implies a smoother path of the average earnings over time and more steady reduction in
the earnings gap between long and short leave mother. Different from the SR model it does not
suggest that long leave mothers fully catch up with short leave mothers over the 6 year period
following the return to the labor market. These patterns are also reflected in the estimates
for the average earnings effects in terms of log earnings and percentage changes reported in
Table 8. Mothers with long leave return with a gap of roughly 0.15-0.17 in log earnings under
all three models, which implies roughly a 15% earnings gap in the first year. After 6 years
mothers with a long leave have on average 0.8% higher earnings under the two SR models, and
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Table 8: Average treatment effects for the three models.

ATE log income: mean (sd) ATE percentage change: mean (sd)
t SRI Model SRF Model SF Model SRI Model SRF Model SF Model

1 -0.174 (0.010) -0.163 (0.010) -0.148 (0.008) -15.9 (0.9) -14.9 (0.8) -13.7 (0.7)
2 -0.075 (0.009) -0.067 (0.009) -0.087 (0.007) -7.1 (0.9) -6.4 (0.9) -8.2 (0.7)
3 -0.048 (0.009) -0.044 (0.009) -0.054 (0.007) -4.6 (0.8) -4.2 (0.8) -5.2 (0.7)
4 -0.028 (0.008) -0.024 (0.009) -0.041 (0.007) -2.7 (0.8) -2.2 (0.8) -3.9 (0.7)
5 -0.023 (0.009) -0.021 (0.009) -0.035 (0.008) -2.2 (0.9) -1.9 (0.9) -3.3 (0.7)
6 0.007 (0.009) 0.007 (0.010) -0.016 (0.008) 0.8 (1.0) 0.8 (1.0) -1.4 (0.8)

a remaining gap of 1.4% under the SF model. However the 95% HPD intervals for the average
treatment effects include zero under the switching regression model, and the upper boundary
of this interval is close to zero in the factor model.

The differences in the potential earnings dynamic and treatment effect patterns are to a
large extend driven by the different panel effects estimated for both treatment groups under
the three different models that were reported in Table 7.

Under the shared factor model we can also estimate a further set of treatment effects, the
treatment effect on the treated (TT) and the treatment effect on the untreated (TU), as defined
in equations (3.17) – (3.18), where the former refers to the average earnings effects of a mother
with long leave and the latter to the average earnings effects of mothers with short leave.
Figure 6 shows the posterior mean and the 95% HPD-interval (indicated by vertical bars)
of the TT (solid blue line) and the TU (dashed blue line) and for comparison also the ATE
(black line). While the TT is essentially an upward a shift of the ATE, the TU is a downward

1 2 3 4 5 6

−0.2

−0.15

−0.1

−0.05

0

0.05

 

 

TT
TU
ATE

Figure 6: Treatment effects on treated and untreated under the shared factor model.

shift of the ATE with the spread between the two slightly increasing over time. Both effects
start out negative in the first panel period and are decreasing over time, however the TT is
positive from the 4th panel period, while the TU remains negative until the last period. These
estimates suggest that mothers taking short leave would have suffered a considerable higher
earnings penalty under long leave than those mothers who chose long leave, as a result of
selection based on observable and unobservable characteristics. For example, we know from
the estimation results that mothers with earnings in the highest quartile before child birth are
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more likely to decide against a long leave and would suffer a earnings penalty under long leave
as indicated by the negative modified effect. The positive selection on unobservables might be
at least partially a result of adjustments in the labor market to most mothers returning after
a longer leave under the new more generous policy regime.

6.3.3 Variances, Covariances and Correlation Structures

We next present the results for the correlation between the latent utility associated with the
maternity leave treatment and the two potential earnings. As discussed previously, the three
models differ in their specification of the correlation structure between the latent utility and
the potential outcomes and the correlation structure within the potential earnings due to
the role of the latent factor. Hence, as in section 5.1.2 we compare the correlations from
the shared factor model with those of the switching regression models marginalized over the
random intercept and the latent factor (equations (5.1), (5.2) and (3.13)). The estimates are
given in Table 9. All three models imply similar patterns with a negative correlation between

Table 9: Marginal correlations between latent utility and outcomes, posterior means, sd (in parenthe-
ses)

SRI Model SRF Model SF Model
t treatment 0 treatment 1 treatment 0 treatment 1 treatment 0 treatment 1

1 -0.119 (0.012) 0.279 (0.023) -0.117 (0.012) 0.224 (0.023) -0.176 (0.009) 0.170 (0.008)
2 -0.162 (0.011) 0.084 (0.022) -0.157 (0.009) 0.011 (0.026) -0.206 (0.010) 0.218 (0.011)
3 -0.185 (0.008) 0.192 (0.018) -0.181 (0.008) 0.141 (0.021) -0.225 (0.011) 0.238 (0.012)
4 -0.196 (0.005) 0.145 (0.021) -0.194 (0.005) 0.093 (0.023) -0.236 (0.012) 0.231 (0.011)
5 -0.203 (0.006) 0.181 (0.021) -0.197 (0.007) 0.127 (0.023) -0.234 (0.011) 0.219 (0.011)
6 -0.184 (0.008) 0.112 (0.020) -0.180 (0.008) 0.068 (0.023) -0.222 (0.011) 0.210 (0.010)

latent treatment and the potential earnings under short leave for all periods, and a positive
correlation for potential earnings under long leave for all periods. In other words, we have
negative confounding between utility associated with longer leave and earnings under long
leave for short leave mothers or positive confounding between utility associated with shorter
leave and earnings under short leave, i.e. mothers under short leave gain from short leave.
For mothers in the long leave group the positive confounding indicates a ”gain” on long leave
from the confounding factors. One interpretation of this finding is that mothers chose the best
option given their circumstances, such as by us unobserved options regarding flexible working
hours and their intentions regarding working hours.

The magnitude of the correlations is similar for the short leave treatment in all three models,
with more pronounced correlations in the shared factor model. Under long leave treatment
the shared factor model yields positive correlations around 0.2, whereas the other two models
yield only low positive correlations for t = 2. The more flexible modeling of the correlation
structures in the switching regression models might be responsible for the higher variation
across the time periods, while the structure of the shared factor model induces a temporal
smoothing of the correlations across time. It should also be noted that, in particular in the
two switching regression models, the correlations are identified based on mothers that chose a
maternity leave length different from the incentives given by the policy regime in place. This
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is a very small subset of 772 mothers who chose long leave prior to policy change. Under the
SF model the correlations are in part based on the estimates of the factor loadings that are
more embedded in the modeling structure with more identification coming from the model in
addition to the smoothing from the λx component.

The estimated variances in the outcome model are essentially identical across the three
model specifications. Under the SRF model the posterior means and standard deviations of
the idiosyncratic error terms ǫji in the potential earnings models are as follows:

σ2
0 = {0.123 (0.002), 0.072 (0.001), 0.044 (0.001), 0.026 (0.000), 0.028 (0.001), 0.046 (0.001)},

σ2
1 = {0.102 (0.001), 0.044 (0.001), 0.019 (0.000), 0.028 (0.000), 0.045 (0.001), 0.058 (0.001)}.

An interesting feature is the decrease in variance over the first 3-4 panel periods and a slight
increase afterwards. The decrease is likely to be driven by a convergence in the hours worked by
mothers as their children get older and child care availability increase. Similarly, the increase
coincides roughly with the onset of the school age, around period 5 under short leave and at
period 4 for long leave mothers whose children are on average one year older at their return
to the labor market. As school ends midday in Austria with no lunch provided many mothers
reduce their working hours again.

In the SRI model the correlation across the potential panel earnings is captured by random
coefficients, with the variances estimated as D0 = 0.164 (0.002) under the short leave and
D1 = 0.136 (0.002) under long leave. In the SRF and SF models the correlation is captured by
a more flexible factor structure with the time-varying factor loadings estimated as

|λ0| = {0.340 (0.004), 0.379 (0.003), 0.411 (0.003), 0.426 (0.003), 0.413 (0.003), 0.395 (0.003)},

|λ1| = {0.290 (0.003), 0.353 (0.003), 0.385 (0.002), 0.384 (0.002), 0.366 (0.003), 0.356 (0.004)},

under the SRF model and as

|λ0| = {0.341 (0.004), 0.381 (0.003), 0.413 (0.003), 0.428 (0.003), 0.415 (0.003), 0.397 (0.003)},

|λ1| = {0.290 (0.003), 0.356 (0.003), 0.387 (0.002), 0.386 (0.003), 0.368 (0.003), 0.358 (0.004)},

under the SF model. We notice that the absolute values of the factor loadings are almost
identical across the two models. In connection with the essentially identical estimates of the
idiosyncratic error variances, this leads to roughly the same covariance matrix of the potential
earnings vectors marginalized over the random effects across these two models. Below we
therefore only report the covariance matrices, Ωj , for SRF model. The estimates of the off-
diagonal elements exhibit a reasonable amount of variation, between 0.13 and 0.18 for treatment
0, and between 0.10 and 0.15 under treatment 1. Under both treatments we observe that the
correlation between yj,it and the outcomes in the following period increases as t increases.
Assuming that mothers increase their work hours, unaccounted for in our analysis due to data
limitations, we would expect to see such a pattern. As discussed previously the latent factor
structure in the earnings models allows for a more flexible modeling of this covariance matrix.
In comparison, the SRI model imposes compound symmetry on the covariance matrices with
the off-diagonal terms given by Dj resulting in the following variances

V(y0i) = {0.288, 0.234, 0.207, 0.193, 0.194, 0.211},

V(y1i) = {0.241, 0.178, 0.157, 0.167, 0.182, 0.194},

32



Table 10: Covariance matrices under the SRF model, posterior mean.

treatment 0 treatment 1
t 1 2 3 4 5 6 1 2 3 4 5 6

1 0.239 0.129 0.140 0.145 0.140 0.134 0.186 0.102 0.111 0.111 0.106 0.103
2 0.129 0.216 0.156 0.162 0.157 0.150 0.102 0.168 0.136 0.136 0.129 0.125
3 0.140 0.156 0.213 0.175 0.170 0.162 0.111 0.136 0.167 0.148 0.141 0.137
4 0.145 0.162 0.175 0.208 0.176 0.168 0.111 0.136 0.148 0.176 0.140 0.137
5 0.140 0.157 0.170 0.176 0.199 0.163 0.106 0.129 0.141 0.140 0.179 0.130
6 0.134 0.150 0.162 0.168 0.163 0.202 0.103 0.125 0.137 0.137 0.130 0.185

and covariances Cov(y0,it, y0,is) = 0.164 and Cov(y1,it, y1,is) = 0.136 after marginalization over
the random effects.

Under the SF model the estimated factor loadings of the potential earnings models further
imply a correlation structure across the potential outcomes. In Table 11, we report the implied
covariance structure between the potential earnings, Cov(y0i,y1i) = λ0λ

′
1. A somewhat puz-

Table 11: Shared factor model: Implied covariance between potential outcomes

Cov(y0,it,y1,it) 1 2 3 4 5 6

1 -0.099 -0.121 -0.132 -0.132 -0.125 -0.122
2 -0.111 -0.135 -0.147 -0.147 -0.140 -0.136
3 -0.120 -0.147 -0.160 -0.159 -0.152 -0.148
4 -0.124 -0.152 -0.166 -0.165 -0.157 -0.153
5 -0.120 -0.148 -0.161 -0.160 -0.153 -0.149
6 -0.115 -0.141 -0.154 -0.153 -0.146 -0.142

zling feature of these estimates are the negative signs. According to standard human capital
theory, where the correlations are assumed to be driven by unobserved ability, we would ex-
pect a positive sign. A high ability mother would be expected to be earning more under short
and long leave relative to a low ability mother. While it is not clear what drives the negative
correlation in our case, there are a number of possible explanations. An obvious possibility is
the lack of information on working hours that would distort the correlation if the work hour
patterns are different across the two maternity leave treatments for high (low) ability mothers
in that high ability mothers would work less hours under the long leave treatment. One possi-
ble scenario that could lead to such a pattern is that high ability mothers who have invested
a lot into their career before children, continue with that approach and take a short leave
and return for many hours or decide to invest a lot into their child’s development by taking
a long maternity leave and working less hours after they return. The unobserved difference
in working hours would then drive the negative correlation. Another possible explanation is
based on assortative matching, i.e. the idea that high earning mothers are married to high
earning men, while lower income mothers are more likely to be married to lower income men.
Thus for lower income mothers it might not be a financially viable option to return for only a
portion of full-time hours due to the lower family income, while high income mothers can rely
on their partner’s income. Finally, families with high income mothers are also more likely to
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have moved away from their parents to pursue their career and have therefore less child care
options available while their children are young (no grandparents in town).

7 Conclusion

In this paper we have discussed Bayesian treatment effect models for panel outcomes and
investigated the effect of long versus short maternity leave on a mother’s earnings in a six-year
period following her return to the labor market. For our analysis we have employed a large
sample of mothers from the Austrian Social Security Register data and exploited a unique
recent change in maternity leave policy. We find substantial but decreasing negative earnings
effects from long maternity leave on a mother’s earnings over the first 5 years after her return,
with the estimated earnings penalties ranging from around 15% in the first period to 2% in
the 5th period. We find strong evidence for the presence of heterogeneous treatment effects of
the covariates, in particular the panel effects which drive the narrowing of the gap.

To isolate the causal effects of the endogenous maternity leave treatment on later earnings
we have introduced two modeling approaches within the potential earnings framework that
allow for heterogeneous treatment effects but differ in their assumptions regarding the mod-
eling of two key features, the dependence between the treatment and the outcome and the
dependence structure of the panel outcomes. The first modeling framework is based on the
switching regression approach and does not impose any assumptions about the (unobserved)
joint distribution of the two potential outcome sequences, while the second framework is based
on the latent factor approach to model the endogeneity of the treatment. The latter implies
assumptions of a joint distribution of the potential outcomes, thus allowing for the estimation
of additional treatment effects (treatment effect on the treated and treatment effect on the un-
treated). An advantage of the latent factor approach is the flexible modeling of the dependence
across the panel outcomes compared to the compound symmetry structure imposed under the
standard switching regression model with random intercepts. To exploit this flexibility we
have introduced a switching regression model that employs latent factors to model the panel
dependence of the outcomes, while retaining the flexible modeling of the dependence between
the treatment and the outcome under the switching regression setup.

For all three models we have implemented stochastic variable selection on the regression
effects via spike and slab priors to test which covariates should be included and to test for
the presence of a constant and heterogeneous treatment effects. We have described efficient
samplers for each of the models that have been tested in a simulation study, showing also that
variable selection can be implemented in the context of treatment models. The simulation
study also illustrates potential consequences for model inference as a result from possible mis-
specification of the dependence between the treatment and the outcome and the dependence
structure within panel outcomes. We find that both the dependence between outcome and
latent utility and also the dependence structure within panel outcomes have to be captured
correctly to obtain unbiased treatment effect estimates. Inference based on the switching re-
gression model with the more flexible latent factor based modeling of the panel dependence
(SRF), rather than the commonly used random intercept with its compound symmetry (SRI),
appears to be least affected by mis-specification within our simulation study. A potentially
promising extension would be a latent factor model, where one factor captures dependence
between latent utility and panel outcomes and one or more factors capture within panel de-
pendence.
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A Details on posterior sampling

A.1 Sampling for the Switching Regression Model

The MCMC scheme for posterior inference in the switching regression model with random
intercept involves the following steps:

(1) For i = 1, . . . , n sample x∗i from its conditional posterior distribution, which is the normal
distribution given in equation (4.8), truncated to the interval Ixi

.

(2) Sample indicator variables, regression effects and random intercepts.

(2a) Sample (ν, δ) and (α,β) for the joint regression model with multivariate normal er-
ror distribution given in equation (3.7). This step is described in detail in Appendix
A.3.

(2b) For i = 1, . . . , n and xi = j sample the random intercept bji from the full conditional
normal posterior N (hi,Hi) with the posterior moments depending on xi = j:

Hi = (1/Dj + 1′(Σj − ωjω
′
j)

−11)−1,

hi = Hi1
′(Σj − ωjω

′
j)

−1ỹi,

where ỹi denotes the working observations ỹi = yji −Wjiβ − ωj(x
∗
i − Ziα).

(3) For j = 0, 1 sampleDj from the conditional posterior G−1
(
dj0 + nj/2,Dj0 +

∑
i:xi=j b

2
ji/2

)

where nj is the number of subjects with xi = j.

(4) For j = 0, 1 and t = 1, . . . , T sample log σ2j,t from p(log σ2j,t|Θ
SRI\σ2j,t,b,x

∗,y,x). Up-
dates are performed in a random order of {1, . . . T}.

(5) For j = 0, 1 and t = 1, . . . , T sample ρj,t from p(ρj,t|Θ
SRI\ρj,t,b,x

∗,y,x). Updates are
performed in a random order of {1, . . . T}.

(6) Sample πα and πβ from their respective posteriors B (1 + kα, 1 + dα − kα) and B (1 + kβ , 1 + dβ − kβ)
where kα =

∑
νl is the number of selected regressors for the latent utility and kβ =

∑
δl

accordingly the number of selected regressors for the potential outcomes.

Note that the full conditionals in sampling steps (4) and (5) only involve subjects i with xi = j,
see equations (4.9) and (4.10). In both steps we use the Metropolis-Hastings algorithm, where
our proposal distribution is a t-distribution with parameters obtained from few maximization
steps (currently we use 10 iterations of the SQP algorithm implemented in Matlab). This
proposal is truncated to the stationarity region when sampling the correlation parameters, more

precisely we propose a value ρ∗j,t from the t-distribution truncated to ±
√

0.999 −
∑

t6=t∗ ρ
2
j,t.

For the SRF model with factor structure in the joint variance-covariance matrix Ωj, j = 0, 1,
step (2b) is replaced by sampling the latent factors and step (3) by sampling the factor loadings
from their respective full conditionals. These are standard steps in the linear normal model

ỹi = b̃jiλj + εji, εji ∼ NT

(
0,Σj − ωjω

′
j

)
, withxi = j

To take into account non-identifiability of the signs of factor loadings and factors this step is
concluded by a random sign-switch. Finally, to sample the parameters σj and ρj we condition
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on the latent factors b as well as the factor loadings λj , which is the only modification required
in sampling steps (4) and (5).

In detail, the sampling steps which require modification for a factor structure in the outcome
covariance matrix are as follows:

(2b*) For i = 1, . . . , n and xi = j sample the latent factor b̃ji from the full conditional

N
(
h̃i, H̃i

)
with moments depending on xi = j:

H̃i = (1 + λ′
j(Σj − ωjω

′
j)

−1λj)
−1,

h̃i = H̃iλ
′
j(Σj − ωjω

′
j)

−1ỹi.

(3*) For j = 0, 1 sample λ0
j from N (lj,Lj), where

Lj =
( ∑

i:xi=j

b̃2ji(Σj − ωjω
′
j)

−1 + L−1
j0

)−1
,

lj = Lj(
∑

i:xi=j

b̃ji(Σj − ωjω
′
j)

−1ỹi + L−1
j0 lj0).

To perform the random sign-switch of the latent factors b and the factor loadings (λ0,λ1)
sample random variables ξj for j = 0, 1 with P (ξj = −1) = P (ξj = 1) = 0.5. Set

λ
(new)
j = λjξj and set b̃

(new)
ji = b̃jiξj for all i, where xi = j and use b(new),λ

(new)
0 and

λ
(new)
1 as updated values of the chain. Note that this sign-switch does not change the

product λj b̃ji for xi = j.

(4*) For j = 0, 1 and t = 1, . . . , T sample log σ2j,t from p(log σ2j,t|Θ
SRF \σ2j,t,b,x

∗,y,x). Up-
dates are performed in a random order of {1, . . . T}.

(5*) For j = 0, 1 and t = 1, . . . , T sample ρj,t from p(ρj,t|Θ
SRF \ρj,t,b,x

∗,y,x). Updates are
performed in a random order of {1, . . . T}.

A.2 Posterior Sampling in the Shared Factor Model

In the shared factor model specified in equations (3.9) to (3.11), the error terms ηi, ε0i, ε1i are
independent. Hence the augmented likelihood including the unobserved latent utilities is given
as

p(x,x∗,y|ΘSF , f) =

n∏

i=1

p(xi, x
∗
i |α, λx, fi)

∏

i:xi=0

p(y0i|β,Σ0,λ0, fi)
∏

i:xi=1

p(y1i|β,Σ1,λ1, fi)

Conditional on the latent factors, the models for the latent utilities and the potential outcomes
are regression models with the additional regressor fi. This suggests to sample (α, λx) as well
as (β,λ) in one block. To simplify notation we denote by δ the joint vector of indicators for
regression effects β and the factor loadings δ = (δβ, δλ).

The complete sampling scheme involves the following steps:

(1) For i = 1, . . . , n sample the latent factor fi from the full conditional posterior

p(fi|Θ
SF , x∗i ,yxi,i) ∝ p(x∗i ,yxi,i|Θ

SF , fi)p(fi)

which is a normal distribution, N (fn,i, Fn,i), with the posterior moments depending on
xi = j, see equation (4.12).
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(2) For i = 1, . . . , n sample x∗i from N (Ziα+ λxfi, 1) truncated to the interval Ixi
.

(3) Perform variable selection (i.e. sampling of ν) and sample the regression coefficients
(α, λx) in the latent utility model

x∗i = Ziα+ λxfi + νi, νi ∼ N (0, 1) .

Note that only elements of α are subject to selection whereas fi is not.

(4) Perform variable selection (i.e. sampling of δ) and sampling of regression coefficients
(β,λ0,λ1) in the model for the observed outcomes yxi,i, i = 1, . . . , n which is given as

yxi,i = Wxi,iβ + fiλxi
+ ǫxi,i, ǫxi,i ∼ N (0,Σxi

) .

(5) To take into account non-identifiability of the signs of factors and factor loadings we
perform a random sign-switch of f and (λx,λ0,λ1), i.e. we sample a random variable ξ

with P (ξ = 1) = P (ξ = −1) = 0.5, set f (new) = ξf , λ
(new)
x = ξλx and λ

(new)
j = λjξ for

j = 0, 1, and use f (new), λ
(new)
x and λ

(new)
j as updated values of the chain.

(6) For j = 0, 1 and t = 1, . . . , T sample σ2j,t from G−1 (sn,jt, Sn,jt) where

sn,jt = s0,jt + nj/2 Sn,jt = S0,jt + Sejt/2

and
Sejt =

∑

i:xi=j

(yj,it −Wj,itβ − fiλ
2
j,t)

2.

Here nj is the number of subjects with outcome j and Wj,it denotes the values of the
covariates at panel time t, i.e. row t of the covariate matrix Wji.

(7) Sample πα, πβ and πλ from their respective posteriors B (1 + k•, 1 + d• − k•) and where
d• is the number of the respective effects subject to selection and k• is the number of
selected effects, i.e. where the corresponding indicators take the value 1.

Sampling steps (3) and (4) are the standard sampling steps used for linear regression models
with variable selection and are detailed in Appendix A.3. The modification required in this
scheme for sampling for different prior inclusion probabilities πβ and πλ of the elements of β
and λ is straightforward.

A.3 Variable selection with spike and slab priors in regression models

Consider a linear regression model

yi = Wiβ + εi, εi ∼ N (0,Vi) ,

with independent observations yi, i = 1, . . . , n and regressor matrix Wi of dimension T × d.
By introducing a d× 1 indicator vector δ we specify a spike and slab prior distribution for the
elements of β as

p(β|δ) =
∏

j:δj=1

pslab(βj)
∏

j:δj=0

pspike(βj), (A.1)
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For elements of β which are not subject to selection the corresponding indicator δj is set
to 1, otherwise p(δj = 1) = π with hyper-prior π ∼ B (a0, b0) . Variable selection is based
on the posterior probabilities for p(δj = 1|y) which can be sampled using MCMC methods.
Here we use a Dirac spike pspike(βj) = ∆0(βj) and specify the slab component by pslab(βj) =
p(βj |N (0, B0)). Sampling δ conditional on β would result in a reducible Markov chain, and
therefore it is essential to sample the indicator vector δ marginalizing over β, when a Dirac
spike is specified.

For sampling from the posterior distribution the sampling scheme therefore consists of the
following steps.

1. Update δ componentwise in a random permutation ̺ of (1, . . . , d): For j = 1, . . . , d set
l = ̺j and sample δl from the posterior

p(δl|δ\l,y, π) ∝ p(y|δ, π)p(δ|π)p(π).

For a linear regression model the marginalized likelihood p(y|δ) is available analytically
as

p(y|δ) ∝
|Bδ

n|
1/2

|Bδ
0 |

1/2

n∏

i=1

|Vi|
−1/2 · exp

(
−
1

2

n∑

i=1

(y′
iV

−1
i yi)− (bδ

n)
′(Bδ

n)
−1bδ

n

)
,

where

(Bδ
n)

−1 = (Bδ
0)

−1 +

n∑

i=1

(Wδ
i )

′V−1
i Wδ

i , (A.2)

bδ
n = Bδ

n

n∑

i=1

(Wδ
i )

′V−1
i yi, (A.3)

and Wδ
i consists of those columns j of Wi where the corresponding indicator δj = 1 and

Bδ
0 = B0Ik, where k =

∑d
j=1 δj .

2. Sample βδ, i.e. the elements of β with non-zero indicators from its full conditional
posterior Nk

(
bδ
n,B

δ
n

)
and set the remaining elements of β to zero.

3. Denoting by k the number of selected regression effects, i.e. k =
∑d

j=1 δj , the full
conditional of π is the Beta-distribution B (a0 + k, b0 + d− k).

B Further results from the simulation study

In Table 12 we report the posterior means and the sampling standard deviations for the re-
gression coefficients in the selection equation. Effects for which the inclusion probability is
above 0.5, implying that the corresponding effect is selected into the model are marked with
’*’. As the variance of the latent utility σx is restricted to 1 in the SR models while the SF
model specification implies that σx =

√
1 + λ2x , we report the estimation results for α/σx.

In data set 3, generated from the SF model, the (true) rescaled regression coefficients are
α/
√

1 + λ2x = (−0.74, 0.66, 0, 1.23).
For data set 3 the posterior mean of factor loading λx was 0.681 (0.021) in the SF model.

38



Table 12: Results selection equation: posterior means, sd (in parentheses) of regression effects

data SRI Model SRF Model SF Model

1 intercept -0.91 (0.010) -0.90 (0.010) -0.91 (0.010)
v1 0.80 (0.008)* 0.80 (0.008)* 0.80 (0.008)*
v2 0.00 (0.003) 0.00 (0.002) 0.00 (0.003)
z 1.51 (0.014)* 1.50 (0.013)* 1.50 (0.014)*

2 intercept -0.91 (0.010) -0.90 (0.009) -0.90(0.010)
v1 0.81 (0.008)* 0.80 (0.007)* 0.80 ( 0.008)*
v2 -0.00 (0.002) 0.00 (0.002) 0.00 (0.001)
z 1.52 (0.014)* 1.50 (0.012)* 1.50 (0.013)*

3 intercept -0.72 (0.010) -0.73 (0.008) -0.72 (0.010)
v1 0.66 (0.007)* 0.66 (0.007)* 0.66 (0.007)*
v2 0.00 (0.003) 0.00 (0.002) 0.00 (0.004)
z 1.22 (0.013)* 1.24 (0.012)* 1.22 (0.013)*

Table 13: Difference between true and estimated matrices Ω0 and Ω1, sd (in parenthesis)

data SRI Model SRF Model SF Model
1 Ω0 -0.002 -0.004 -0.004 -0.004 -0.001 -0.001 -0.004 -0.004 -0.001 -0.006 -0.011 -0.013

(0.005) (0.004) (0.004) (0.004) (0.006) (0.005) (0.005) (0.004) (0.006) (0.005) (0.005) (0.005)
-0.004 -0.004 -0.004 -0.001 -0.003 -0.002 -0.006 -0.011 -0.013

(0.005) (0.004) (0.004) (0.006) (0.005) (0.005) (0.006) (0.005) (0.005)
-0.002 -0.004 -0.004 -0.005 -0.015 -0.018

(0.005) (0.004) (0.006) (0.004) (0.006) (0.005)
-0.003 -0.004 -0.020

(0.005) (0.006) (0.006)
Ω1 -0.000 -0.005 -0.005 -0.005 0.001 -0.006 -0.012 0.003 0.064 0.026 0.014 0.019

(0.016) (0.010) (0.010) (0.010) (0.019) (0.014) (0.014) (0.014) (0.019) (0.012) (0.013) (0.013)
-0.001 -0.005 -0.005 -0.005 -0.016 -0.002 0.027 0.004 0.009

(0.016) (0.010) (0.010) (0.019) (0.015) (0.014) (0.017) (0.013) (0.013)
-0.011 -0.005 -0.022 -0.007 -0.015 -0.034

(0.015) (0.010) (0.018) (0.014) (0.018) (0.013)
-0.002 0.005 -0.058

(0.015) (0.018) (0.017)
2 Ω0 0.027 0.037 0.017 -0.002 -0.003 -0.004 -0.002 0.001 -0.008 -0.008 -0.007 -0.003

(0.003) (0.002) (0.002) (0.002) (0.004) (0.003) (0.003) (0.002) (0.006) (0.004) (0.003) (0.003)
0.014 0.002 -0.015 0.002 -0.002 0.001 -0.002 -0.006 -0.003

(0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.004) (0.005) (0.005)
-0.011 -0.028 -0.005 0.001 -0.008 -0.002
(0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

-0.024 -0.001 -0.005
(0.003) (0.002) (0.003)

Ω1 0.082 0.125 0.055 -0.015 0.004 -0.011 0.007 -0.013 0.029 0.002 0.019 -0.004
(0.013) (0.006) (0.006) (0.006) (0.015) (0.011) (0.009) (0.009) (0.014) (0.010) (0.009) (0.008)

0.026 0.006 -0.055 -0.016 -0.002 -0.018 0.004 0.014 -0.006
(0.012) (0.006) (0.006) (0.014) (0.009) (0.009) (0.013) (0.008) (0.008)

-0.025 -0.095 -0.005 -0.005 0.013 0.006
(0.012) (0.006) (0.012) (0.007) (0.012) (0.006)

-0.05 0.002 -0.001
(0.012) (0.011) (0.011)

3 Ω0 0.058 0.077 0.017 0.017 0.018 0.017 0.016 0.016 -0.000 -0.003 0.000 -0.000
(0.004) (0.003) (0.003) (0.003) (0.006) (0.004) (0.004) (0.004) (0.006) (0.005) (0.004) (0.004)

0.060 0.017 0.017 0.019 0.015 0.015 -0.002 -0.002 -0.002
(0.004) (0.003) (0.003) (0.005) (0.004) (0.004) (0.006) (0.004) (0.004)

-0.023 -0.033 0.014 0.015 0.001 0.000
(0.004) (0.003) (0.004) (0.003) (0.005) (0.004)

-0.025 0.012 -0.003
(0.003) (0.005) (0.005)

Ω1 0.024 0.061 0.001 0.001 0.003 0.005 -0.001 0.013 0.003 0.007 0.001 0.015
(0.013) (0.008) (0.008) (0.008) (0.014) (0.011) (0.010) (0.010) (0.013) (0.009) (0.009) (0.008)

0.011 0.001 0.001 -0.014 -0.006 0.007 -0.012 -0.006 0.008
(0.013) (0.008) (0.008) (0.015) (0.010) (0.010) (0.013) (0.008) (0.009)

-0.032 -0.049 -0.011 0.003 -0.010 0.003
(0.013) (0.008) (0.013) (0.009) (0.012) (0.008)

-0.025 0.005 0.008
(0.013) (0.013) (0.012)

Table 13 reports the bias (true values – estimated values) for the elements of covariance
matrices of the outcome vectors with values not included in the 99%-HPD interval given in
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bold. Differences are small if the correct (data generating) model is applied to analyze the
data. Results for data sets 2 and 3 indicate that the compound symmetry structure implied
by a random intercept is too restrictive to capture the dependence structure in models with a
latent factor, as deviations of the estimates from the true values can be relatively large.
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